Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 19(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356808

RESUMEN

Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms of their protein equivalent content, amino acid profile and score and physicochemical properties in addition to their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and stimulate the secretion of insulin from BRIN-BD11 cells. Furthermore, the effect of simulated gastrointestinal digestion (SGID) on the stability of the BW-SPHs and their associated in vitro antidiabetic activity was investigated. The BW-SPHs contained between 70-74% (w/w) protein and all essential and non-essential amino acids. All BW-SPHs mediated DPP-IV inhibitory (IC50: 2.12-2.90 mg protein/mL) and insulin secretory activity (2.5 mg/mL; 4.7 to 6.4-fold increase compared to the basal control (5.6 mM glucose alone)). All BW-SPHs were further hydrolysed during SGID. While the in vitro DPP-IV inhibitory and insulin secretory activity mediated by some BW-SPHs was reduced following SGID, the activity remained high. In general, the insulin secretory activity of the BW-SPHs were 4.5-5.4-fold higher than the basal control following SGID. The BW-SPHs generated herein provide potential for anti-diabetic related functional ingredients, whilst also enhancing environmental and commercial sustainability.


Asunto(s)
Diabetes Mellitus Tipo 2 , Peces , Hidrolisados de Proteína/química , Animales , Línea Celular/efectos de los fármacos , Proteínas en la Dieta , Alimentos Funcionales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Hidrolisados de Proteína/farmacología , Alimentos Marinos , Espectrometría de Masas en Tándem
2.
Mol Nutr Food Res ; 64(21): e2000403, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939966

RESUMEN

Prevalence of type 2 diabetes and overweight/obesity are increasing globally. Food supplementation as a preventative option has become an attractive option in comparison to increased pharmacotherapy dependency. Hydrolysates of fish processing waste and by-products have become particularly interesting in a climate of increased food wastage awareness and are rapidly gaining traction in food research. This review summarizes the available research so far on the potential effect of these hydrolysates on diabetes and appetite suppression. Scopus and Web of Science are searched using eight keywords (fish, hydrolysate, peptides, satiating, insulinotropic, incretin, anti-obesity, DPP-4 [dipeptidylpeptidase-4/IV]) returning a total of 2549 results. Following exclusion criteria (repeated appearances, non-fish marine sources [e.g., macroalgae], and irrelevant bioactivities [e.g., immunomodulatory, anti-thrombotic]), 44 relevant publications are included in this review. Stimulation of hormone secretion, regulation of glucose uptake, anorexigenic potential, identified mechanisms of action, and research conducted on the most potent bioactive peptides identified within these hydrolysates are all specifically addressed. Results of this review conclude that despite wide methodological variation between studies, there is significant potential for the application of fish protein hydrolysates in the management of bodyweight and hyperglycemia.


Asunto(s)
Proteínas de Peces en la Dieta/farmacología , Hipoglucemiantes/farmacología , Hidrolisados de Proteína/farmacología , Animales , Anorexia/inducido químicamente , Proteínas de Peces en la Dieta/química , Glucosa/metabolismo , Humanos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Hidrolisados de Proteína/química
3.
Food Res Int ; 131: 108989, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32247474

RESUMEN

Twenty-two novel dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides (with IC50 values <200 µM) and fifteen novel insulinotropic peptides were identified in a boarfish protein hydrolysate generated at semi-pilot scale using Alcalase 2.4L and Flavourzyme 500L. This was achieved by bioassay-driven semi-preparative reverse phase-high performance liquid chromatography fractionation, liquid chromatography-mass spectrometry and confirmatory studies with synthetic peptides. The most potent DPP-IV inhibitory peptide (IPVDM) had a DPP-IV half maximal inhibitory concentration (IC50) value of 21.72 ±â€¯1.08 µM in a conventional in vitro and 44.26 ±â€¯0.65 µM in an in situ cell-based (Caco-2) DPP-IV inhibition assay. Furthermore, this peptide stimulated potent insulin secretory activity (1.6-fold increase compared to control) from pancreatic BRIN-BD11 cells grown in culture. The tripeptide IPV exhibited potent DPP-IV inhibitory activity (IC50: 5.61 ±â€¯0.20 µM) comparable to that reported for the known DPP-IV inhibitor IPI (IC50: 3.20 µM). Boarfish proteins contain peptide sequences with potential to play a role in glycaemic management in vivo.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Peces/clasificación , Secuencia de Aminoácidos , Animales , Peces/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hidrolisados de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...