Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(12): e22986, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144267

RESUMEN

The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets. Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer. Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems. This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves. Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect.

2.
Acta Naturae ; 15(3): 50-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908771

RESUMEN

The Rurikids were the reigning house of Rus', its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus', the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?-1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221-1263). It has been established that his Y chromosome belongs to the N1a haplogroup. Most of the modern Rurikids, according to their genealogies, belonging to the N1a haplogroup, have the most similar variants of Y chromosomes to each other, as well as to the Y chromosome of Prince Dmitry Alexandrovich. Genome-wide data of the medieval and modern Rurikids unequivocally indicates that they belong to the N1a haplogroup of the Y chromosome, starting at least from the XI century (since the time of Prince Yaroslav the Wise). All the other alleged Rurikids, both ancient and modern, being carriers of other haplogroups (R1a, I2a), possess high heterogeneity of the sequence of Y chromosomes, meaning that we cannot confirm their common ancestry. The most probable ancestors of Prince Dmitry Alexandrovich in the male line were the men who left the burial ground Bolshoy Oleny Island on the coast of the Kola Peninsula about 3,600 years ago. The reconstruction of the genome of Prince Dmitry Alexandrovich indicates the contribution of three ancestral components to his origin: (1) the early medieval population of the east of Scandinavia from the island of Oland, (2) representatives of the steppe nomadic peoples of the Eurasian steppes of the Iron Age or the early medieval population of central Europe (steppe nomads from the territory of Hungary), and (3) the ancient East-Eurasian component. Reliable statistics were also obtained when the Scandinavians were replaced with the Medieval Russian Slavic populations of the XI century. Thus, for the first time, we have shown the complex nature of interethnic interactions in the formation of the nobility of medieval Rus' on the example of the ancient Rurikid.

3.
Dokl Biol Sci ; 513(1): 368-373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37700103

RESUMEN

A morphological description is provided for a unique find of a frozen mummified subfossil brown bear (Ursus arctos L., 1758), found for the first time ever. The find is a well-preserved bear carcass of approximately 3500 years in age. Results of computed tomography and DNA testing are discussed.


Asunto(s)
Ursidae , Animales , Ursidae/clasificación
4.
Acta Naturae ; 15(1): 87-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153511

RESUMEN

Several different methods of DNA library preparation for paleogenetic studies are now available. However, the chemical reactions underlying each of them can affect the primary sequence of ancient DNA (aDNA) in the libraries and taint the results of a statistical analysis. In this paper, we compare the results of a sequencing of the aDNA libraries of a Bronze Age sample from burials of the Caucasian burial ground Klady, prepared using three different approaches: (1) shotgun sequencing, (2) strategies for selecting target genomic regions, and (3) strategies for selecting target genomic regions, including DNA pre-treatment with a mixture of uracil-DNA glycosylase (UDG) and endonuclease VIII. The impact of the studied approaches to genomic library preparation on the results of a secondary analysis of the statistical data, namely F4 statistics, ADMIXTURE, and principal component analysis (PCA), was analyzed. It was shown that preparation of genomic libraries without the use of UDG can result in distorted statistical data due to postmortem chemical modifications of the aDNA. This distortion can be alleviated by analyzing only the single nucleotide polymorphisms caused by transversions in the genome.

5.
Vavilovskii Zhurnal Genet Selektsii ; 27(7): 820-828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38213708

RESUMEN

Currently, active research is focused on investigating the mechanisms that regulate the development of various pathologies and their evolutionary dynamics. Epigenetic mechanisms, such as DNA methylation, play a significant role in evolutionary processes, as their changes have a faster impact on the phenotype compared to mutagenesis. In this study, we attempted to develop an algorithm for identifying differentially methylated regions associated with metabolic syndrome, which have undergone methylation changes in humans during the transition from a hunter-gatherer to a sedentary lifestyle. The application of existing whole-genome bisulfite sequencing methods is limited for ancient samples due to their low quality and fragmentation, and the approach to obtaining DNA methylation profiles differs significantly between ancient hunter-gatherer samples and modern tissues. In this study, we validated DamMet, an algorithm for reconstructing ancient methylomes. Application of DamMet to Neanderthal and Denisovan genomes showed a moderate level of correlation with previously published methylation profiles and demonstrated an underestimation of methylation levels in the reconstructed profiles by an average of 15-20 %. Additionally, we developed a new Python-based algorithm that allows for the comparison of methylomes in ancient and modern samples, despite the absence of methylation profiles in modern bone tissue within the context of obesity. This analysis involves a two-step data processing approach, where the first step involves the identification and filtration of tissue-specific methylation regions, and the second step focuses on the direct search for differentially methylated regions in specific areas associated with the researcher's target condition. By applying this algorithm to test data, we identified 38 differentially methylated regions associated with obesity, the majority of which were located in promoter regions. The pipeline demonstrated sufficient efficiency in detecting these regions. These results confirm the feasibility of reconstructing DNA methylation profiles in ancient samples and comparing them with modern methylomes. Furthermore, possibilities for further methodological development and the implementation of a new step for studying differentially methylated positions associated with evolutionary processes are discussed.

6.
Acta Naturae ; 14(1): 109-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35441049

RESUMEN

A breakthrough in cattle breeding was achieved with the incorporation of animal genomic data into breeding programs. The introduction of genomic selection has a major impact on traditional genetic assessment systems and animal genetic improvement programs. Since 2010, genomic selection has been officially introduced in the evaluation of the breeding and genetic potential of cattle in Europe, the U.S., Canada, and many other developed countries. The purpose of this study is to develop a system for a genomic evaluation of the breeding value of the domestic livestock of Black-and-White and Russian Holstein cattle based on 3 milk performance traits: daily milk yield (kg), daily milk fat (%), and daily milk protein content (%) and 6 fertility traits: age at first calving (AFC), calving interval (CI), calving to first insemination interval (CFI), interval between first and last insemination (IFL), days open (DO), and number of services (NS). We built a unified database of breeding animals from 523 breeding farms in the Russian Federation. The database included pedigree information on 2,551,529 cows and 69,131 bulls of the Russian Holstein and Black-and-White cattle breeds, as well as information on the milk performance of 1,597,426 cows with 4,771,366 completed lactations. The date of birth of the animals included in the database was between 1975 and 2017. Genotyping was performed in 672 animals using a BovineSNP50 v3 DNA Analysis BeadChip microarray (Illumina, USA). The genomic estimated breeding value (GEBV) was evaluated only for 644 animals (427 bulls and 217 cows) using the single-step genomic best linear unbiased prediction - animal model (ssGBLUP-AM). The mean genetic potential was +0.88 and +1.03 kg for the daily milk yield, -0.002% for the milk fat content, and -0.003 and 0.001% for the milk protein content in the cows and bulls, respectively. There was negative genetic progress in the fertility traits in the studied population between 1975 and 2017. The reliability of the estimated breeding value (EBV) for genotyped bulls ranged from 89 to 93% for the milk performance traits and 85 to 90% for the fertility traits, whereas the reliability of the genomic estimated breeding value (GEBV) varied 54 to 64% for the milk traits and 23 to 60% for the fertility traits. This result shows that it is possible to use the genomic estimated breeding value with rather high reliability to evaluate the domestic livestock of Russian Holstein and Black-and-White cattle breeds for fertility and milk performance traits. This system of genomic evaluation may help bring domestic breeding in line with modern competitive practices and estimate the breeding value of cattle at birth based on information on the animal's genome.

7.
Sci Rep ; 7(1): 18089, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273769

RESUMEN

miRNAs play important role in the various physiological and evolutionary processes, however, there is no data allowing comparison of evolutionary differences between various ecotypes adapted to different environmental conditions and specimen demonstrating immediate physiological response to the environmental changes. We compared miRNA expression profiles between marine and freshwater stickleback populations of the three-spined stickleback to identify the evolutionary differences. To study the immediate physiological response to foreign environment, we explored the changes induced by transfer of marine sticklebacks into freshwater environment and vice versa. Comparative analysis of changes in miRNA expression suggested that they are driven by three independent factors: (1) non-specific changes in miRNA expression under different environmental conditions; (2) specific response to freshwater conditions in the marine stickleback ecotype; (3) specific response to extreme osmotic conditions for both marine and freshwater ecotypes during the contact with non-native environment. Gene Ontology enrichment analysis of differential expressed miRNA targets supports our current hypothesis.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Agua Dulce , MicroARNs/genética , Agua de Mar , Smegmamorpha/genética , Animales , Evolución Biológica , Variación Genética
8.
Mol Biol (Mosk) ; 51(4): 615-621, 2017.
Artículo en Ruso | MEDLINE | ID: mdl-28900079

RESUMEN

Miniaturization is an evolutionary process that is widely represented in both invertebrates and vertebrates. Miniaturization frequently affects not only the size of the organism and its constituent cells, but also changes the genome structure and functioning. The structure of the main heat shock genes (hsp70 and hsp83) was studied in one of the smallest insects, the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp, which is comparable in size with unicellular organisms. An analysis of the sequenced genome has detected six genes that relate to the hsp70 family, some of which are apparently induced upon heat shock. Both induced and constitutively expressed hsp70 genes contain a large number of introns, which is not typical for the genes of this family. Moreover, none of the found genes form clusters, and they are all very heterogeneous (individual copies are only 75-85% identical), which indicates the absence of gene conversion, which provides the identity of genes of this family in Drosophila and other organisms. Two hsp83 genes, one of which contains an intron, have also been found in the M. amalphitanum genome.


Asunto(s)
Tamaño Corporal/genética , Genoma , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Insectos/genética , Filogenia , Avispas/genética , Animales , Exones , Expresión Génica , Proteínas HSP70 de Choque Térmico/química , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Insectos/química , Intrones , Familia de Multigenes , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Empalme del ARN , Avispas/anatomía & histología , Avispas/clasificación
9.
Genom Data ; 11: 87-88, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28066711

RESUMEN

The vast majority of multicellular organisms coexist with bacterial symbionts that may play various roles during their life cycle. Parasitoid wasp Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) belongs to the smallest known insects whose size is comparable with some bacteria. Using 16S rRNA gene sequencing and Whole Genome Sequencing (WGS), we described microbiota diversity for this arthropod and its potential impact on their lifecycle. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX2363723 and SRX2363724. We found that small body size and limited lifespan do not lead to a significant reduction of bacterial symbionts diversity. At the same time, we show here a specific feature of microbiota composition in M. amalphitanum - the absence of the Rickettsiaceae family representatives that are known to cause sex-ratio distortion in arthropods and well represented in other populations of parasitoid wasps.

10.
Mol Ecol Resour ; 16(6): 1491-1498, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27238497

RESUMEN

The three-spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three-spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high-throughput sequencing technology was applied to identify microRNA genes in gills of the three-spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected 'divergence islands' was analysed and 10 miRNA genes were identified as not randomly located in 'divergence islands'. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.


Asunto(s)
Branquias , MicroARNs/análisis , Smegmamorpha/genética , Animales , Ecotipo , Agua Dulce , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/clasificación , MicroARNs/genética , Agua de Mar , Smegmamorpha/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...