Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 204(9): 562, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35980477

RESUMEN

Statistical optimization of aeration conditions viz. aerobic, microaerobic and anaerobic, was performed using response surface methodology (RSM) utilizing soybean meal as medium to enhance the production of laccase from Rheinheimera sp. Maximum laccase yield (18.48 × 105 U/L) was obtained under microaerobic (static) conditions sustained for 12 h in tandem with 26 h aerobically (150 rpm) grown culture, which was 17.03-fold higher than laccase production in the starting M162 medium under aerobic conditions (150 rpm). The reduction in incubation time from 72 to 38 h and utilization of cost-effective soybean meal as medium, which is easily available from local market, have provided a promising, eco-friendly method of laccase enzyme production. Enhanced expression of laccase gene under microaerobic conditions corresponded to the increased expression of fnr (fumarate nitrate reductase) gene, the oxygen sensing global regulator. The putative FNR-binding site upstream of laccase transcription initiation site was predicted to play an imperative role in Rheinheimera sp. adaptation from aerobic to microaerobic conditions and for enhanced laccase production.


Asunto(s)
Chromatiaceae , Lacasa , Lacasa/genética , Lacasa/metabolismo , Nitrato-Reductasa , Nitratos , Oxígeno
2.
Bioresour Technol ; 347: 126706, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35033642

RESUMEN

Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.


Asunto(s)
Lignina , Enzimas Multifuncionales , Biomasa
3.
Environ Sci Pollut Res Int ; 29(3): 3355-3371, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773239

RESUMEN

The overuse of antibiotics and their disposal without processing are leading the environment and its inhabitants towards a serious health emergency. There is abundance of diverse antibiotic resistance genes and bacteria in environment, which demands immediate attention for the effective removal of antibiotics. There are physical and chemical methods for removal, but the generation of toxic byproducts has directed the efforts towards bioremediation for eco-friendly and sustainable elimination of antibiotics from the environment. Various effective and reliable bioremediation approaches have been used, but still antibiotic residues pose a major global threat. Recent developments in molecular and synthetic biology might offer better solution for engineering of microbe-metabolite biodevices and development of novel strains endowed with desirable properties. This review summarizes the impact of antibiotics on environment, mechanisms of resistance development, and different bioremediation approaches.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Bacterias/genética , Biodegradación Ambiental
4.
Int J Biol Macromol ; 193(Pt B): 1835-1844, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774862

RESUMEN

COVID-19 pandemic continues to be a global threat, affecting more than 200 countries/territories at both human and economic level. This necessitates the rapid development of highly reliable diagnostic methods in order to effectively and accurately diagnose the pathology to prevent the spread of COVID-19. Currently, RT-PCR is the most widely used method worldwide for SARS-CoV-2 detection. Serological assays are being used for sero-surveys of SARS-CoV-2 antibody prevalence in the community. Radiology imaging has been useful in the clinical diagnosis of COVID-19. These methods have their own limitations and there are continued efforts to develop easier, economic, highly sensitive and specific, point-of-care methods. Reverse transcription-loop mediated isothermal amplification (RT-LAMP), nucleic acid sequence-based amplification (NASBA), CRISPR-Cas-based detection, and digital PCR are such techniques being employed in research laboratories, with many awaiting diagnostic approval from competent authorities. This review highlights the rapidly expanding array of existing and in-development diagnostic tests/strategies that may be used to diagnose SARS-CoV-2 infection in both clinical and research settings.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Pandemias , Sistemas de Atención de Punto , ARN Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Humanos
5.
Microbiol Res ; 222: 1-13, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30928025

RESUMEN

The acquisition of metal ions such as iron, copper and manganese is essential for the survival of microorganisms as these are constituents of metalloproteins including enzymes, storage proteins, structural elements, transcription factors and antimicrobial factors in various biological processes. However, excess of these metal ions is associated with significant toxicity due to spontaneous redox cycling of ions and obstruction of normal metabolic pathways. To overcome this, microbes have developed a variety of metal regulatory systems allowing them to adapt to the changing biotic and abiotic environments. Multi-copper oxidases (MCOs) such as ceruloplasmins, ferroxidases, laccases and nitrite reductases are such regulatory systems employed by microbes to resist the toxicity of metal ions by controlling their oxidation states under aerobic conditions. MCOs help pathogens survive during an infection by evasion of the toxic environment generated by the host immune system and thus are considered necessary determinants of virulence. This review summarizes the role of MCOs in metal homeostasis under stressful conditions and the extent to which these MCOs contribute to microbial virulence within the host that might prove as an esteemed avenue for the development of novel antimicrobial therapies.


Asunto(s)
Oxidorreductasas/fisiología , Estrés Fisiológico , Factores de Virulencia/fisiología , Antiinfecciosos , Bacterias/enzimología , Fenómenos Fisiológicos Bacterianos , Desnitrificación , Hongos/enzimología , Hongos/fisiología , Homeostasis , Evasión Inmune , Iones/toxicidad , Melaninas/metabolismo , Metales/toxicidad , Nitrito Reductasas/fisiología , Nitritos/metabolismo , Pigmentación , Virulencia
6.
3 Biotech ; 7(3): 200, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28667639

RESUMEN

Laccases have potential applications in industrial, biotechnological, and environmental set ups. Development of cost effective and efficient production technologies has gained significant attention in recent years. To enhance the laccase production from Rheinheimera sp. (Gram negative) using submerged fermentation (SmF) and from Lysinibacillus sp. (Gram positive) using solid-state fermentation (SSF), the inducing effect of various flavonoid-rich agro-industrial residues was investigated. Peels of citrus fruits, soybean meal, tofu dreg, lignin monomers, and lingo-cellulosic waste, used tea leaves and peels of onion and kiwi, paper, and dying industry effluents were tested as inducers. In SmF, 0.1% of soybean meal, tofu dreg, and powdered orange peel were best, enhancing the laccase production 2.57-, 2.11-, and 2.05-fold, respectively. In SSF, 10 mg (w/w) of used tata acti green tea leaves per 5 g of wheat bran, 1% pulp and paper industry effluent (agro based), and 1% wine made from Sygium cumini enhanced the laccase production 2.69-, 2.61-, and 2.09-fold, respectively. These results suggest the utilization of these flavonoid and phenolic-rich waste materials to be potential enhancers of industrially important laccase production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...