Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(4): e4037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736204

RESUMEN

Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Complicaciones de la Diabetes/metabolismo , Estrés Oxidativo , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Inflamación/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/etiología
2.
Bioorg Chem ; 147: 107378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643562

RESUMEN

Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3ß (GSK-3ß) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3ß and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3ß and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3ß and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3ß and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Vía de Señalización Wnt , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Quinasa Idelta de la Caseína/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Animales , Relación Estructura-Actividad
3.
J Biomol Struct Dyn ; : 1-13, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433403

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-ß plays a significant role in the progression and severity of IPF. The TGF-ß receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-ß1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-ß1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38305295

RESUMEN

The global prevalence of fungal infections is alarming in both the pre- and postCOVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-αdemethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.

5.
J Biomol Struct Dyn ; : 1-18, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37517055

RESUMEN

A series of halogen-substituted aurone derivatives (2a-k) were synthesized and evaluated for an anti-proliferative study against NCI 60 cancer cell line panel and showed that most of the compounds predominantly exhibited promising activity against MCF-7. Compound 2e exhibited promising anticancer activity against the MCF-7 cancer cell line with 84.98% percentage growth inhibition in a single dose assay of 10 µM with an IC50 value of 8.157 ± 0.713 µM. In apoptotic assay, the effect of compound 2e on the cell cycle progression indicated that exposure of MCF-7 cells to compound 2e induced a significant disruption in the cell cycle profile including a time-dependent decrease in the cell population at G0/G1 and G2/M phase and arrests the cell cycle at the S phase. In silico, molecular docking ADME and toxicity studies of all compounds were also carried out. The docking study revealed that all the aurone derivatives displayed good docking scores ranging from -7.066 to -8.573. The results of Molecular Electrostatic Potential Mapping (MESP) and Density Functional Theory (DFT) studies of the most active compound 2e and least active compound 2k also favoured the experimental results.

6.
Expert Opin Ther Targets ; 27(6): 419-431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37368464

RESUMEN

INTRODUCTION: The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of individual countries leading to the declaration of MPX as a Public Health Emergency. Owing to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and anti-smallpox drugs Brincidofovir and Tecovirimat were granted emergency use authorization by the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, and other vaccines as treatment options. AREAS COVERED: This article covers the historical development of EUA-granted antivirals, resistance to these antivirals, and the projected impact of signature mutations on the potency of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in individuals coinfected with HIV and MPXV, the treatment results among these individuals have been included. EXPERT OPINION: All EUA-granted drugs have been approved for smallpox treatment. These antivirals show good potency against Mpox. However, conserved resistance mutation positions in MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications are required not only for the current but also for possible future outbreaks.


Asunto(s)
Mpox , Estados Unidos , Humanos , Antivirales/farmacología , Cidofovir , Benzamidas
7.
Iran J Basic Med Sci ; 26(5): 517-525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051097

RESUMEN

Objectives: Cardiovascular diseases are widespread across the globe, and heart failure (HF) accounts for the majority of heart-associated deaths. Target-based drug therapy is much needed for the management of heart failure. We have designed this study to evaluate icariin for its cardioprotective activity in the isoproterenol (ISO) induced postinfarction model. We have randomly distributed Wistar rats into seven groups, i.e., vehicle control; isoproterenol-treated; icariin per se; sildenafil per se; ISO + icariin 5; ISO + icariin 10; and ISO + sildenafil groups. ISO (85 mg/kg, subcutaneous) was administered at 24 hr for two consecutive days to produce cardiac injury, followed by icariin administration at 5 mg/kg and 10 mg/kg orally for 56 days. Materials and Methods: Rats were subjected to hemodynamic measurements biweekly. After 24 hr of the completion of dosing, animals were sacrificed, and markers for oxidative stress, fibrosis, inflammation, and cell death were measured. Transmission electron microscopy (TEM), histopathology, and MT staining of cardiac tissue were also done to assess the pathological and fibrotic architectural damage. Results: A significant decline in hemodynamics and an anti-oxidant collapse were found in ISO-intoxicated rats. Alterations in the levels of cyclic guanosine monophosphate (cGMP), interleukin-10 (IL-10), Tumor necrosis factor (TNF-α), and brain natriuretic peptide (BNP) were also observed in serum. Up-regulation of caspase-3, nuclear factor (NF-ĸB), and decline in expression of nuclear factor (NrF-2) contribute to cardiac damage. The treatment with icariin and sildenafil considerably reversed the toxic changes toward normal. Conclusion: Increased cGMP and Nrf2 expression and suppressed NF-ĸB-caspase-3 signaling play a pivotal role in icariin-mediated cardioprotection.

8.
J Enzyme Inhib Med Chem ; 38(1): 2189126, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36950918

RESUMEN

A series of 20 newly designed (E)-1-(4-sulphamoylphenylethyl)-3-arylidene-5-aryl-1H-pyrrol-2(3H)-ones was synthesised and assessed as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors towards four human isoforms of pharmaceutical interest, that is, hCA I, II, IX and XII. The compounds displayed low to high nanomolar potency against all the isoforms. Introducing strong electron withdrawing groups at the para position of the arylidene ring increased the binding affinity to the enzyme. All compounds showed acceptable pharmacokinetic range and physicochemical characteristics as determined by computational ADMET analysis. Density Functional Theory (DFT) calculations of 3n were carried to gain understanding on the stability of the E and Z isomers. The energy values clearly indicate the stability of E isomer over Z isomer by -8.2 kJ mol-1. Our findings indicate that these molecules are useful as leads for discovering new CA inhibitors.


Asunto(s)
Antígenos de Neoplasias , Anhidrasas Carbónicas , Humanos , Anhidrasa Carbónica IX , Antígenos de Neoplasias/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Modelos Teóricos , Relación Estructura-Actividad , Estructura Molecular
9.
ACS Omega ; 8(7): 6650-6662, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844525

RESUMEN

Six 1,4-benzothiazin-3-ones (2a-f) and four benzothiazinyl acetate derivatives (3a-d) were synthesized and characterized by various spectroscopic methods, namely, 1H NMR, 13C NMR, IR, MS, and elemental analysis. The cytotoxic effects of the compounds were assessed against MCF-7, a human breast cancer cell line, along with their anti-inflammatory activity. Molecular docking studies performed against the VEGFR2 kinase receptor displayed a common binding orientation of the compounds in the catalytic binding pocket of the receptor. The generalized Born surface area (GBSA) studies of compound 2c with the highest docking score also proved its stability in binding to the kinase receptor. Compounds 2c and 2b showed better results against VEGFR2 kinase with IC50 values of 0.0528 and 0.0593 µM, respectively, compared to sorafenib. All of the compounds (2a-f and 3a-d) showed effective growth inhibition having (IC50) values of 2.26, 1.37, 1.29, 2.30, 4.98, 3.7, 5.19, 4.50, 4.39, and 3.31 µM, respectively, against the MCF-7 cell line compared to standard 5-fluorouracil (IC50 = 7.79 µM). However, compound 2c displayed remarkable cytotoxic activity (IC50 = 1.29 µM), suggesting it as a lead compound in the cytotoxic assay. Additionally, compounds 2c and 2b showed better results against VEGFR2 kinase with IC50 values of 0.0528 and 0.0593 µM, respectively, compared to sorafenib. It also inhibited hemolysis by stabilizing the membrane comparable to that of diclofenac sodium, a standard used in the human red blood cell membrane stabilization assay and hence can act as a template for designing novel anticancer and anti-inflammatory agents.

10.
ACS Omega ; 8(7): 6918-6930, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844532

RESUMEN

Candidal vulvovaginitis involving multispecies of Candida and epithelium-bound biofilm poses a drug-resistant pharmacotherapeutic challenge. The present study aims for a disease-specific predominant causative organism resolution for the development of a tailored vaginal drug delivery system. The proposed work fabricates a luliconazole-loaded nanostructured lipid carrier-based transvaginal gel for combating Candida albicans biofilm and disease amelioration. The interaction and binding affinity of luliconazole against the proteins of C. albicans and biofilm were assessed using in silico tools. A systematic QbD analysis was followed to prepare the proposed nanogel using a modified melt emulsification-ultrasonication-gelling method. The DoE optimization was logically implemented to ascertain the effect of independent process variables (excipients concentration; sonication time) on dependent formulation responses (particle size; polydispersity index; entrapment efficiency). The optimized formulation was characterized for final product suitability. The surface morphology and dimensions were spherical and ≤300 nm, respectively. The flow behavior of an optimized nanogel (semisolid) was non-Newtonian similar to marketed preparation. The texture pattern of a nanogel was firm, consistent, and cohesive. The release kinetic model followed was Higuchi (nanogel) with a % cumulative drug release of 83.97 ± 0.69% in 48 h. The % cumulative drug permeated across a goat vaginal membrane was found to be 53.148 ± 0.62% in 8 h. The skin-safety profile was examined using a vaginal irritation model (in vivo) and histological assessments. The drug and proposed formulation(s) were checked against the pathogenic strains of C. albicans (vaginal clinical isolates) and in vitro established biofilms. The visualization of biofilms was done under a fluorescence microscope revealing mature, inhibited, and eradicated biofilm structures.

11.
J Biochem Mol Toxicol ; 37(5): e23321, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808794

RESUMEN

Vascular endothelial growth factor receptor-2 (VEGFR-2) is crucial in promoting tumor angiogenesis and cancer metastasis. Thus, inhibition of VEGFR-2 has appeared as a good tactic for cancer treatment. To find out novel VEGFR-2 inhibitors, first, the PDB structure of VEGFR-2, 6GQO, was selected based on atomic nonlocal environment assessment (ANOLEA) and PROCHECK assessment. 6GQO was then further used for structure-based virtual screening (SBVS) of different molecular databases, including US-FDA approved drugs, US-FDA withdrawn drugs, may bridge, MDPI, and Specs databases using Glide. Based on SBVS, receptor fit, drug-like filters, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of 427877 compounds, the best 22 hits were selected. From the 22 hits, hit 5 complex with 6GQO was put through molecular mechanics/generalized born surface area (MM/GBSA) study and hERG binding. The MM/GBSA study revealed that hit 5 possesses lesser binding free energy with more inferior stability in the receptor pocket than the reference compound. The VEGFR-2 inhibition assay of hit 5 disclosed an IC50 of 165.23 nM against VEGFR-2, which can be possibly enhanced through structural modifications.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico
12.
Future Med Chem ; 15(1): 9-24, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655571

RESUMEN

Background: Mining of novel scaffolds as potential DPP-IV inhibitors for future development of potential candidates as antidiabetic agents to address global issues. Methodology: The identified hit KB-10 from a previously reported study was taken as a lead for designing a library of analogues and screened initially based on in silico parameters and docking score. A series of selected (2[4-(1-acetyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy]-1-phenylethanone derivatives were synthesized and evaluated through in vitro studies. Compounds KB-23, KB-22 and KB-06 were found to be as potent, with IC50 values of 0.10 µM, 0.12 µM and 0.35 µM, respectively. They also showed promising antihyperglycemic potential in in vivo studies (oral glucose tolerance tests) in Wistar rats. Conclusion: This work establishes pyrazoline analogues KB-23, KB-22 and KB-06 as promising starting points for the development of potential antidiabetic agents.


Asunto(s)
Ácidos Aminosalicílicos , Hipoglucemiantes , Ratas , Animales , Hipoglucemiantes/farmacología , Ratas Wistar , Prueba de Tolerancia a la Glucosa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
13.
J Biochem Mol Toxicol ; 37(4): e23300, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36703564

RESUMEN

It is well-documented that pro-inflammatory cytokines and inflammation play a significant role in the expansion of cancer disease. Gallic acid (GA), a natural compound, and metformin (Met), a synthetic drug exhibit potent anticancer potential via the distinct molecular mechanism. However, whether both these compounds can act synergistically to preclude and treat cancer is still unknown. This prompted us to scrutinize, the synergism between GA and Met, and that of a new co-drug synthesizing of GA and Met (GA-Met) and investigated the chemo-protective effect against breast cancer with possible intervention of cytokines. In vivo studies were based on chemical carcinogenesis, challenging breast tissue by dimethylbenz[α]anthracene (DMBA). Tumour incidence, tumour burden, pro-inflammatory cytokines in serum, breast, hepatic tissue, macroscopically and histological analysis of mammary tumours were carried out and estimated. GA, Met and GA-Met co-drug exhibited the inhibition of cell proliferation; higher reduction of cell proliferation was observed by GA-Met. The inhibitory effect of GA-Met was linked to cell cycle arrest at G0/G1 phase, along with induction of apoptosis and accumulation in the sub-G1 phase. GA-Met significantly inhibited the cytokines production along with protection against DMBA-induced hyperplasia. Taken altogether, the current result suggests that GA-Met co-drug endows a safe and protective effect against cancer metastasis and can possibly use for the treatment of human breast cancer.


Asunto(s)
Neoplasias de la Mama , Metformina , Humanos , Femenino , Citocinas , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Desarrollo de Medicamentos , Apoptosis
14.
Pharm Pat Anal ; 12(6): 287-314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38294336

RESUMEN

Quinoline inhibitors are appealing medicinal products for a range of illnesses and problems. It is bicyclic heterocyclic scaffold has been intensively employed in pharmacological research and is well known for its wide range of biological purposes. Biological activities exhibited by quinoline derivatives, such as anti-inflammatory properties, antioxidant, antimicrobial, anti-tubercular, antidiabetic, anti-malarial and others are covered in detail in this review. The IC50 of patented inhibitors might range from nm to µM range, based on the experiments used. It presents an outline of patents file between 2002 and 2023 concerning to biological activities by quinoline derivatives. As a result, it is critical to develop additional chemical quinoline core alterations for novel chemical compounds and enhanced pharmacological impacts.


Asunto(s)
Diseño de Fármacos , Quinolinas , Quinolinas/farmacología , Quinolinas/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología
15.
Biomedicines ; 10(10)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36289855

RESUMEN

The latest SARS-CoV-2 variant of concern (VOC), Omicron (B.1.1.529), has diversified into more than 300 sublineages. With an expanding number of newly emerging sublineages, the mutation profile is also becoming complicated. There exist mutually exclusive and revertant mutations in different sublineages. Omicron sublineages share some common mutations with previous VOCs (Alpha, Beta, Gamma, and Delta), indicating an evolutionary relationship between these VOCs. A diverse mutation profile at the spike-antibody interface, flexibility of the regions harboring mutations, mutation types, and coexisting mutations suggest that SARS-CoV-2's evolution is far from over.

17.
Iran J Basic Med Sci ; 25(5): 577-585, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35911646

RESUMEN

Objectives: Excess intake of a high-fatty diet (HFD) together with zymosan administration mediates vasculitis response which leads to impaired serum lipid levels and causes arterial stiffness. In the development of new cholesterol-lowering medications, PCSK9 inhibitor (proprotein convertase subtilisin/kexin type 9) is an emerging therapeutic. The goal of the present study was to see whether anti-PCSK9 mAb1 might prevent vasculitis in C57BL/6 mice by blocking TLR2/NF-B activation in HFD and Zymosan-induced vasculitis. Materials and Methods: Protein-protein molecular docking was performed to validate the binding affinity of anti-PCSK9 mAb1 against TLR2. Under the experimental study, mice were randomly allocated to the following groups: Group I: standard mice diet (30 days) + Zymosan vehicle (sterile PBS solution of 5mg/ml on 8th day); Group II: HFD (30 days) + Zymosan ( single IP dose 80 mg/kg on day 8th); Group III: HFD+Zymosan + anti-PCSK9 mAb1 (6 mg/kg, s.c. on 10th and 20th days); Group IV: HFD+Zymosan+anti-PCSK9 mAb1 (10 mg/kg, s.c. on 10th and 20th days). Results: In comparison with the low dose of anti-PCSK9 mAb1 (6 mg/kg), the high dose of anti-PCSK9 mAb1 (10 mg/kg) together with HFD and Zymosan inhibited vasculitis more effectively by decreasing aortic TLR2 and NF-B levels, reducing serum TNF- and IL-6, and up-regulating liver LDLR levels, which down-regulated serum LDL-C and improved serum lipids levels. Histopathological studies showed that anti-PCSK9 mAb1 treatment reduced plaque accumulation in the aorta of mice. Conclusion: These findings indicate that anti-PCSK9 mAb1 has therapeutic potential in reducing HFD and Zymosan-induced vascular inflammation.

18.
In Silico Pharmacol ; 10(1): 12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898574

RESUMEN

Despite the availability of COVID-19 vaccines, additional more potent vaccines are still required against the emerging variations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the present investigation, we have identified a promising vaccine candidate against the Omicron (B.1.1.529) using immunoinformatics approaches. Various available tools like, the Immune Epitope Database server resource, and NetCTL-1.2, have been used for the identification of the promising T-cell and B-cell epitopes. The molecular docking was performed to check the interaction of TLR-3 receptors and validated 3D model of vaccine candidate. The codon optimization was done followed by cloning using SnapGene. Finally, In-silico immune simulation profile was also checked. The identified T-cell and B-cell epitopes have been selected based on their antigenicity (VaxiJen v2.0) and, allergenicity (AllerTOP v2.0). The identified epitopes with antigenic and non-allergenic properties were fused with the specific peptide linkers. In addition, the 3D model was constructed by the PHYRE2 server and validated using ProSA-web. The validated 3D model was further docked with the Toll-like receptor 3 (TLR3) and showed good interaction with the amino acids which indicate a promising vaccine candidate against the Omicron variant of SARS-CoV-2. Finally, the codon optimization, In-silico cloning and immune simulation profile was found to be satisfactory. Overall, the designed vaccine candidate has a potential against variant of SARS-Cov-2. However, further experimental studies are required to confirm.

19.
Pharmaceutics ; 14(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35890297

RESUMEN

The present study aims to design, develop and characterize kNGR (Asn-Gly-Arg) peptide-conjugated lipid-polymer-based nanoparticles for the target-specific delivery of anticancer bioactive(s), i.e., Paclitaxel (PTX). The kNGR-PEG-DSPE conjugate was synthesized and characterized by using spectral analysis. The dual-targeted PLGA-lecithin-PEG core-shell nanoparticles (PLNs-kNGR-NPs) were synthesized using a modified nanoprecipitation process, and their physiological properties were determined. The results support that, compared to other NPs, PLNs-kNGR-NPs are highly cytotoxic, owing to higher apoptosis and intracellular uptake. The significance of rational nanoparticle design for synergistic treatment is shown by the higher tumor volume inhibition percentage rate (59.7%), compared to other designed formulations in Balb/c mice in the HT-1080 tumor-induced model. The overall results indicate that the PLNs-kNGR-NPs-based hybrid lipid-polymer nanoparticles present the highest therapeutic efficacy against solid tumor overexpressing the CD13 receptors.

20.
Chem Biol Drug Des ; 100(3): 389-418, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35712793

RESUMEN

The quinoline scaffolds are privileged for their numerous biological activities in the pharmaceutical field. This moiety constitutes a well-known space in several marketed preparations. The quinoline scaffolds gained attention in modern days being an important chemical moiety in the identification, designing, and synthesis of novel potent derivatives. The current review is developed to shine the light on critical and significant insights on the quinoline derivatives possessing diverse biological activities such as analgesic, anti-inflammatory, antialzheimer, anti-convulsant, anti-oxidant, antimicrobial, anti-cancer activities and so on. A detailed summary of quinoline ring from its origin to the recent advancements regarding its synthesis, green chemistry approaches, patented methods, and its marketed drugs is presented in the review. We attempted to review the literature compiling the critical information that has potential to encourage fellow researchers and scientists for the design and development of quinoline scaffold based active molecules that have improved therapeutic performance along with profound pharmacological properties.


Asunto(s)
Preparaciones Farmacéuticas , Quinolinas , Analgésicos/química , Antiinfecciosos/química , Preparaciones Farmacéuticas/química , Quinolinas/química , Antineoplásicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA