Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Solid State Nucl Magn Reson ; 124: 101858, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36796278

RESUMEN

Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cß, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.

2.
Science ; 369(6499): 96-102, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631893

RESUMEN

Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.

3.
J Biomol NMR ; 74(4-5): 229-237, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31894471

RESUMEN

Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , N-Formilmetionina Leucil-Fenilalanina/química , Isótopos de Nitrógeno
4.
J Chem Phys ; 150(14): 144201, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981235

RESUMEN

Heteronuclear spin decoupling is a highly important component of solid-state NMR experiments to remove undesired coupling interactions between unlike spins for spectral resolution. Recently, experiments using a unification strategy of standard decoupling schemes were presented for high radio-frequency (RF) amplitudes and slow-intermediate magic-angle-spinning (MAS) frequencies, in the pursuit of deeper understanding of spin decoupling under phase-modulated RF irradiation [A. Equbal et al., J. Chem. Phys. 142, 184201 (2015)]. The approach, unified two-pulse heteronuclear decoupling (UTPD), incorporates the simultaneous time- and phase-modulation strategies, commonly used in solid-state NMR. Here, the UTPD based decoupling scheme is extended to the experimentally increasingly important regime of low RF amplitudes and fast MAS frequencies. The unified decoupling approach becomes increasingly effective in identifying the deleterious dipole-dipole and, in particular, J recoupling conditions which become critical for the low-amplitude RF regime. This is because J coupling is isotropic and therefore not averaged out by sample spinning unlike the anisotropic dipole-dipole coupling. Numerical simulations and analytic theory are used to understand the effects of various nuclear spin interactions on the decoupling performance of UTPD, in particular, the crucial difference between the low-phase and high-phase UTPD conditions with respect to J coupling. In the UTPD scheme, when the cycle-frequency of the pulse-sequence is comparable to the RF nutation frequency, the existence of a non-zero effective rotation in the basic two-pulse scheme becomes an essential feature for the efficient and robust averaging out of the scalar J coupling. This broad viewpoint is expected to bring different optimum low-power decoupling pulse schemes under a common footing.

5.
J Am Chem Soc ; 140(2): 574-577, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29266934

RESUMEN

Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.

6.
J Chem Phys ; 146(24): 244202, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668064

RESUMEN

Pulse imperfections like pulse transients and radio-frequency field maladjustment or inhomogeneity are the main sources of performance degradation and limited reproducibility in solid-state nuclear magnetic resonance experiments. We quantitatively analyze the influence of such imperfections on the performance of symmetry-based pulse sequences and describe how they can be compensated. Based on a triple-mode Floquet analysis, we develop a theoretical description of symmetry-based dipolar recoupling sequences, in particular, R26411, calculating first- and second-order effective Hamiltonians using real pulse shapes. We discuss the various origins of effective fields, namely, pulse transients, deviation from the ideal flip angle, and fictitious fields, and develop strategies to counteract them for the restoration of full transfer efficiency. We compare experimental applications of transient-compensated pulses and an asynchronous implementation of the sequence to a supercycle, SR26, which is known to be efficient in compensating higher-order error terms. We are able to show the superiority of R26 compared to the supercycle, SR26, given the ability to reduce experimental error on the pulse sequence by pulse-transient compensation and a complete theoretical understanding of the sequence.

7.
J Biomol NMR ; 65(3-4): 127-141, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27364976

RESUMEN

One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text]  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.


Asunto(s)
Espectroscopía de Resonancia Magnética , Proteínas/química , Carbono/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Marcaje Isotópico , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Protones por Resonancia Magnética , Protones
8.
J Magn Reson ; 270: 136-141, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27472380

RESUMEN

The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

9.
J Chem Phys ; 142(13): 134201, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854235

RESUMEN

We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...