Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149290

RESUMEN

Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of leptin signaling whose disruption protects against diet-induced obesity in mice. We investigated whether structural characterization of human PTP1B variant proteins might reveal precise mechanisms to target for weight loss therapy. We selected 12 rare variants for functional characterization from exomes from 997 people with persistent thinness and 200,000 people from UK Biobank. Seven of 12 variants impaired PTP1B function by increasing leptin-stimulated STAT3 phosphorylation in cells. Using room-temperature X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, and computational modeling, we determined that human variants modulate the 3-dimensional structure of PTP1B through distinct allosteric conduits that energetically link distal, highly ligandable structural regions to the active site. These studies inform the design of allosteric PTP1B inhibitors for the treatment of obesity.

2.
J Am Chem Soc ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133641

RESUMEN

Conductive layered metal-organic frameworks (MOFs) have demonstrated promising electrochemical performances as supercapacitor electrode materials. The well-defined chemical structures of these crystalline porous electrodes facilitate structure-performance studies; however, there is a fundamental lack in the molecular-level understanding of charge storage mechanisms in conductive layered MOFs. To address this, we employ solid-state nuclear magnetic resonance (NMR) spectroscopy to study ion adsorption in nickel 2,3,6,7,10,11-hexaiminotriphenylene, Ni3(HITP)2. In this system, we find that separate resonances can be observed for the MOF's in-pore and ex-pore ions. The chemical shift of in-pore electrolyte is found to be dominated by specific chemical interactions with the MOF functional groups, with this result supported by quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT) calculations. Quantification of the electrolyte environments by NMR was also found to provide a proxy for electrochemical performance, which could facilitate the rapid screening of synthesized MOF samples. Finally, the charge storage mechanism was explored using a combination of ex-situ NMR and operando electrochemical quartz crystal microbalance (EQCM) experiments. These measurements revealed that cations are the dominant contributors to charge storage in Ni3(HITP)2, with anions contributing only a minor contribution to the charge storage. Overall, this work establishes the methods for studying MOF-electrolyte interactions via NMR spectroscopy. Understanding how these interactions influence the charging storage mechanism will aid the design of MOF-electrolyte combinations to optimize the performance of supercapacitors, as well as other electrochemical devices including electrocatalysts and sensors.

3.
J Neurogenet ; 38(2): 27-34, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975939

RESUMEN

Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.


Asunto(s)
Ataxia , ADN Mitocondrial , Humanos , Masculino , Femenino , ADN Mitocondrial/genética , Adulto , Persona de Mediana Edad , Ataxia/genética , Adolescente , Enfermedades Mitocondriales/genética , Adulto Joven , Mitocondrias/genética , Niño , Anciano , Secuenciación del Exoma , Fenotipo
4.
J Cell Physiol ; : e31388, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034451

RESUMEN

Runt-related transcription factor 2 (Runx2) is a key regulator of osteoblast differentiation and bone formation. In Runx2-deficient embryos, skeletal development ceases at the cartilage anlage stage. These embryos die of respiratory failure upon birth and display a complete absence of bone and cartilage mineralization. Here, we identified Hakai, a type of E3 ubiquitin ligase as a potential Runx2 interacting partner through affinity pulldown-based proteomic approach. Subsequently, we observed that similar to Runx2, Hakai was downregulated in osteopenic ovariectomized rats, suggesting its involvement in bone formation. Consistent with this observation, Hakai overexpression significantly enhanced osteoblast differentiation in mesenchyme-like C3H10T1/2 as well as primary rat calvaria osteoblast (RCO) cells in vitro. Conversely, overexpression of a catalytically inactive Hakai mutant (C109A) exhibited minimal to no effect, whereas Hakai depletion markedly reduced endogenous Runx2 levels and impaired osteogenic differentiation in both C3H10T1/2 and RCOs. Mechanistically, Hakai physically interacts with Runx2 and enhances its protein turnover by rescuing it from Smad ubiquitination regulatory factor 2 (Smurf2)-mediated proteasome degradation. Wild-type Hakai but not Hakai-C109A inhibited Smurf2 protein levels through proteasome-mediated degradation. These findings underscore Hakai's functional role in bone formation, primarily through its positive modulation of Runx2 protein turnover by protecting it from Smurf2-mediated ubiquitin-proteasomal degradation. Collectively, our results demonstrate Hakai as a promising novel therapeutic target for osteoporosis.

5.
Mol Biol Rep ; 51(1): 873, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080117

RESUMEN

Macrofungi commonly referred to as Mushrooms are distributed worldwide and well known for their nutritional, medicinal, and organoleptic properties. Strain improvement in mushrooms is lagging due to paucity of efficient genome modification techniques. Thus, for advanced developments in research and commercial or economical viability and benefit, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) emerged as an efficient genome editing tool. The higher efficiency and precision of the desired genetic modification(s) are the most valuable attributes of this recent technology. The present review comprehensively summarizes various conventional methods utilized for strain improvement in mushrooms including hybridization, protoplast fusion, and di-mon mating. Furthermore, the problems associated with these techniques have been discussed besides providing the potential recluses. The significance of CRISPR/Cas9 strategies employed for improvement in various mushroom genera has been deliberated, as these strategies will paves the way forward for obtaining improved strain and effective cultivation methods for enhancing the yield and quality of the fruit bodies.


Asunto(s)
Agaricales , Sistemas CRISPR-Cas , Edición Génica , Genoma Fúngico , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Agaricales/genética
6.
Biomedicines ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39062176

RESUMEN

Nitroimidazoles comprise a class of broad-spectrum anti-microbial drugs with efficacy against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. Among these drugs, metronidazole (MTZ) is commonly used with other antibiotics to prevent infection in open fractures. However, the effect of MTZ on bone remains understudied. In this paper, we evaluated six nitroimidazole drugs for their impact on osteoblast differentiation and identified MTZ as having the highest osteogenic effect. MTZ enhanced bone regeneration at the femur osteotomy site in osteopenic ovariectomized (OVX) rats at the human equivalent dose. Moreover, in OVX rats, MTZ significantly improved bone mass and strength and improved microarchitecture compared to the vehicle-treated rats, which was likely achieved by an osteogenic mechanism attributed to the stimulation of the Wnt pathway in osteoblasts. To mitigate the reported neurological and genotoxic effects of MTZ, we designed an injectable sustained-release in situ gel formulation of the drug that improved fracture healing efficacy by 3.5-fold compared to oral administration. This enhanced potency was achieved through a significant increase in the circulating half-life and bioavailability of MTZ. We conclude that MTZ exhibits osteogenic effects, further accentuated by our sustained-release delivery system, which holds promise for enhancing bone regeneration in open fractures.

7.
Arch Pharm Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073743

RESUMEN

Adiponectin, an adipokine, regulates metabolic processes, including glucose flux, lipid breakdown, and insulin response, by activating adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). We have previously shown that globular adiponectin (gAd), an endogenous form of adiponectin, has osteoanabolic and anti-catabolic effects in rodent models of postmenopausal osteopenia. Moreover, we reported the identification of a 13-mer peptide (ADP-1) from the collagen domain of adiponectin, which exhibited significant adiponectin-mimetic properties. Since the clinical development of gAd is constrained by its large size, here, we investigated the osteogenic property of ADP-1. ADP-1 induced osteoblast differentiation more potently than gAd. ADP-1 elicited osteoblast differentiation through two downstream pathways that involved the participation of adiponectin receptors. Firstly, it enhanced mitochondrial biogenesis and OxPhos, leading to osteoblast differentiation. Secondly, it activated the Akt-glycogen synthase kinase 3ß-Wnt pathway, thereby increasing osteoblast differentiation. Additionally, ADP-1 suppressed the production of receptor-activator of nuclear kappa B ligand from osteoblasts, enabling it to act as a dual-action molecule (suppressing osteoclast function besides promoting osteoblast function). In osteopenic ovariectomized rats, ADP-1 increased bone mass and strength and improved trabecular integrity by stimulating bone formation and inhibiting bone resorption. Furthermore, by increasing ATP-producing intermediates within the tricarboxylic acid cycle in bones, ADP-1 likely fueled osteoblast function. Given its dual-action mechanism and high potency, ADP-1 offers a unique opportunity to address the unmet clinical need to reset the aberrant bone remodeling in osteoporosis to normalcy, potentially offering a disease-modifying impact.

8.
Elife ; 122024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904665

RESUMEN

In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift toward modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g., Coot) and fit can be further improved by refinement using standard pipelines (e.g., Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Proteínas/química , Programas Informáticos , Algoritmos , Biología Computacional/métodos
9.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
10.
South Asian J Cancer ; 13(2): 132-141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38919665

RESUMEN

Atreye MajumdarSambit K. MohantyObjective This article identifies and evaluates the frequency of mutations in the BCR-ABL1 kinase domain (KD) of chronic myeloid leukemia (CML) patients who showed suboptimal response to their current tyrosine kinase inhibitor (TKI) regime and assesses their clinical value in further treatment decisions. Materials and Methods Peripheral and/or bone marrow were collected from 791 CML patients. Ribonucleic acid was extracted, reverse transcribed, and Sanger sequencing method was utilized to detect single-nucleotide variants (SNVs) in BCR-ABL1 KD. Results Thirty-eight different SNVs were identified in 29.8% ( n = 236/791) patients. T315I, E255K, and M244V were among the most frequent mutations detected. In addition, one patient harbored a novel L298P mutation. A subset of patients from the abovementioned harbored compound mutations (13.3%, n = 33/236). Follow-up data was available in 28 patients that demonstrated the efficacy of TKIs in correlation with mutation analysis and BCR-ABL1 quantitation. Molecular response was attained in 50% patients following an appropriate TKI shift. A dismal survival rate of 40% was observed in T315I-harboring patients on follow-up. Conclusion This study shows the incidence and pattern of mutations in one of the largest sets of Indian CML patients. In addition, our findings strengthen the prognostic value of KD mutation analysis among strategies to overcome TKI resistance.

11.
Bone ; 185: 117126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777312

RESUMEN

Chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT) heightens fracture risk through impaired mineral homeostasis and elevated levels of uremic toxins (UTs), which in turn enhance bone remodeling. Etelcalcetide (Etel), a calcium-sensing receptor (CaSR) agonist, suppresses parathyroid hormone (PTH) in hyperparathyroidism to reduce excessive bone resorption, leading to increased bone mass. However, Etel's effect on bone quality, chemical composition, and strength is not well understood. To address these gaps, we established a CKD-SHPT rat model and administered Etel at a human-equivalent dose concurrently with disease induction. The effects on bone and mineral homeostasis were compared with a CKD-SHPT (vehicle-treated group) and a control group (rats without SHPT). Compared with vehicle-treated CKD-SHPT rats, Etel treatment improved renal function, reduced circulating UT levels, improved mineral homeostasis parameters, decreased PTH levels, and prevented mineralization defects. The upregulation of mineralization-promoting genes by Etel in CKD-SHPT rats might explain its ability to prevent mineralization defects. Etel preserved both trabecular and cortical bones with attendant suppression of osteoclast function, besides increasing mineralization. Etel maintained the number of viable osteocytes to the control level, which could also contribute to its beneficial effects on bone. CKD-SHPT rats displayed increased carbonate substitution of matrix and mineral, decreased crystallinity, mineral-to-matrix ratio, and collagen maturity, and these changes were mitigated by Etel. Further, Etel treatment prevented CKD-SHPT-induced deterioration in bone strength and mechanical behavior. Based on these findings, we conclude that in CKD-SHPT rats, Etel has multiscale beneficial effects on bone that involve remodeling suppression, mineralization gene upregulation, and preservation of osteocytes.


Asunto(s)
Huesos , Calcimiméticos , Hiperparatiroidismo Secundario , Péptidos , Ratas Sprague-Dawley , Insuficiencia Renal Crónica , Animales , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hiperparatiroidismo Secundario/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Péptidos/farmacología , Calcimiméticos/farmacología , Calcimiméticos/uso terapéutico , Ratas , Hormona Paratiroidea/farmacología , Masculino , Calcificación Fisiológica/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
12.
J Family Med Prim Care ; 13(3): 869-874, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38736837

RESUMEN

Introduction: Efficient care by labour monitoring tools manages labour, identifies the abnormalities and avoids the fatalities. Various studies are being undertaken by the researchers to understand the limited use of these therapeutic tools. The present study aimed to develop a novel labour monitoring instrument after understanding the barriers and enablers of the currently used tools and using it in the health setting for improving clinical outcomes. Materials and Methods: Methodological research design was adopted to develop the novel tool. Item pool was generated by literature review, focus group discussions and retrospective observations of the partographs. Developed tool was evaluated by various experts by undergoing three rounds and was found to be reliable in terms of stability and equivalency. After undergoing pilot runs by researcher and nurses, tool was found to be feasible and understandable. The developed novel labour monitoring tool was used on 200 intranatal women. Results: Focus group discussions revealed various barriers in the current labour tools, such as lack of clarity, complexity, staff shortage, workload etc. Retrospective observation of filled partographs revealed the incomplete recording of the components of the partograph. The prepared first draft underwent rigorous review by the experts. The prepared novel tool, after being used on 200 intranatal women resulted in 90% of normal vaginal deliveries. Duration of 1st stage of labour was around 5 hours. Conclusion: A novel labour monitoring tool was developed after methodological approach resulting in adequate monitoring and improved labour outcomes.

13.
Int Microbiol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740653

RESUMEN

The current study was aimed for the generation of Pleurotus extracellular extract-mediated selenium and zinc-oxide nanoparticles (NPs). The Pleurotus djamor (PD) and Pleurotus sajor-caju (PSC) extracts were incubated with different concentrations of sodium selenate and zinc acetate to yield BioSeNPs and BioZnONPs. The NPs formation led to visual color change (brick-red and white for Se and Zn nanosols, respectively). The synthesized NPs were spherical with size of 124 and 68 nm and 84 and 91 nm for PD and PSC BioSeNPs and BioZnONPs respectively. The UV absorbance peaks were recorded at 293.2 and 292.2 nm and 365.9 and 325.5 nm for BioSeNPs and BioZnONPs derived from PD and PSC respectively. FT-IR spectroscopy indicated specific functional group adoration on metal-based NPs. On supplementation in straw, these NPs improved the fruit body yield besides enhancing their protein and Se/ Zn contents. These biofortified mushrooms could be potential dietary supplement/ nutraceutical.

14.
Cureus ; 16(4): e58339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38752080

RESUMEN

Membranous nephropathy (MN) is an autoimmune condition that is a common cause of nephrotic syndrome in nondiabetic adults. In this study, we highlight a case of a 22-year-old male with a past medical history of arthrogryposis multiplex congenita (AMC) who initially presented with right flank pain and hematuria. Subsequent workup revealed significant proteinuria with biopsy-proven primary MN. Early detection of the disease is critical to establish treatment promptly and prevent complications such as those resulting from a hypercoagulable state.

15.
Commun Med (Lond) ; 4(1): 77, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654117

RESUMEN

BACKGROUND: Bloodstream infections (BSIs) are a life-threatening acute medical condition and current diagnostics for BSIs suffer from long turnaround time (TAT). Here we show the validation of a rapid detection-analysis platform (RDAP) for the diagnosis of BSIs performed on clinical blood samples METHODS: The validation was performed on a cohort of 59 clinical blood samples, including positive culture samples, which indicated confirmed bloodstream infections, and negative culture samples. The bacteria in the positive culture samples included Gram-positive and Gram-negative pathogenic species. RDAP is based on an electrochemical sandwich immunoassay with voltage-controlled signal amplification, which provides an ultra-low limit of detection (4 CFU/mL), allowing the platform to detect and identify bacteria without requiring culture and perform phenotypic antibiotic susceptibility testing (AST) with only 1-2 h of antibiotic exposure. The preliminary diagnostic performance of RDAP was compared with that of standard commercial diagnostic technologies. RESULTS: Using a typical clinical microbiology laboratory diagnostic workflow that involved sample culture, agar plating, bacteria identification using matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry, and AST using MicroScan as a clinical diagnostic reference, RDAP showed diagnostic accuracy of 93.3% and 95.4% for detection-identification and AST, respectively. However, RDAP provided results at least 15 h faster. CONCLUSIONS: This study shows the preliminary feasibility of using RDAP to rapidly diagnose BSIs, including AST. Limitations and potential mitigation strategies for clinical translation of the present RDAP prototype are discussed. The results of this clinical feasibility study indicate an approach to provide near real-time diagnostic information for clinicians to significantly enhance the treatment outcome of BSIs.


Effective treatment of bloodstream infections (BSIs), a life-threatening acute medical condition, requires rapid diagnosis. Current diagnostic methods involve culturing the bacteria from the patient's blood, which requires typically 16­48 h to produce a diagnosis. Here, we demonstrate the feasibility of using a culture-free platform to perform rapid diagnosis of BSIs. We tested the diagnostic platform on a cohort of clinical blood samples. The bacteria contained in the samples covered a representative range of bacteria that cause BSIs. The culture-free platform produced diagnosis in about 15 hours faster than standard commercial diagnostic technologies and  the diagnostic results were in good agreement with that of standard technologies. The results of this study indicate an approach to providing near real-time diagnostic information for clinicians to significantly enhance the treatment outcome of BSIs.

16.
Sci Rep ; 14(1): 5264, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438596

RESUMEN

We present a temporary keyword search over sensitive and confidential health data in a cloud environment. The cloud constitutes a semi-trusted domain, making it necessary for data owners to secure their data before outsourcing it through techniques like encryption. Attribute-based keyword search techniques tend to perform a search operation using a search token generated by an authorized user. These search tokens can lead to serious privacy threats, as they can extract all ciphertexts that may have been generated along with their keyword. Therefore, restricting search tokens to extract ciphertexts generated within a time interval is a more promising solution. In this paper, we present a novel ciphertext policy fine-grained temporary keyword that prevents the misuse of these search tokens. Further, it mitigates the risk of insider threats within healthcare organizations by limiting the window of opportunity for unauthorized access to minimum. To assess the security, our proposed scheme is formally proven to be secure against Selectively Chosen Keyword Attacks in the generic bilinear group model. Additionally, we demonstrate that the encryption algorithm's complexity is linear in relation to the number of attributes. Our scheme's significance and practicality are revealed by the performance evaluation.

17.
iScience ; 27(3): 109280, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444606

RESUMEN

Chitinases and ecdysteroid hormones are vital for insect development. Crosstalk between chitin and ecdysteroid metabolism regulation is enigmatic. Here, we examined chitinase inhibition effect on Spodoptera frugiperda ecdysteroid metabolism. In vitro studies suggested that berberine inhibits S. frugiperda chitinase 5 (SfCht5). The Berberine feeding resulted in defective S. frugiperda development. Berberine-fed insects showed higher SfCht5 and Chitinase 7 expression and cumulative chitinase activity. Chitinase inhibition led to overexpression of chitinases, ecdysteroid biosynthesis, and responsive genes. SfCht5 silencing and overexpression resulted in ecdysone receptor deregulation. Transcription factors, like Broad Complex Z4, regulate the ecdysteroid metabolism and showed high expression upon berberine ingestion. Broad Complex Z4 binding in 5' UTR of Ecdysone receptor, SfCht5, Chitinase 7, Phantom, Neverland, and other ecdysteroid biosynthesis genes might lead to their upregulation in berberine-fed insects. As a result, berberine-fed insects showed ecdysone overaccumulation. These findings underscore chitinase activity's impact on ecdysone biosynthesis and its transcriptional crosstalk.

18.
Cureus ; 16(2): e54382, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505454

RESUMEN

We outline the presentation of a 68-year-old woman who received a chest radiograph due to her insurance requirements, resulting in the discovery of a left-sided pleural effusion. The effusion was further characterized as loculated on subsequent imaging. Thoracentesis yielded exudative fluid, leading to the patient undergoing video-assisted thoracoscopic surgery (VATS). During this procedure, a cystic mass was visualized, with the conversion of the operation to an open thoracotomy and left lower lobe lobectomy. Pathology was positive for spindle cell sarcoma. A thorough history of the patient revealed a decades-long occupational exposure to asbestos. The significance of this report is to illustrate the clinical presentation, immunohistochemical characteristics, and management of a rare spindle cell malignancy. Our case also raises the importance of screening patients on an individualized, shared decision-making basis.

19.
Int Microbiol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506949

RESUMEN

Essential oils are highly complex volatile chemical compounds utilized for food preservation. The present study compares the antibacterial, and antibiofilm activities of essential oils (EOs) and their blends. Three EOs-basil, clove, and lemongrass-and their blends were evaluated against five food-borne bacterial pathogens. A concentration-dependent effect with maximum inhibition at minimum inhibitory concentration values was recorded while no synergistic activity was observed on blending of EOs. The mechanism of antibacterial action was identified as ROS burst, leakage of cytoplasmic content, and DNA degradation through fluorescence microscopy, electrical conductivity, and DNA cleavage studies. The role of EOs on biofilm growth was deciphered with lemongrass EO being most effective as it curbed biofilm formation on the surface of corn-starch packaging films. This work highlights the antibacterial action mechanism of EOs and their potential role in curtailing biofilm growth on food-grade packaging material.

20.
J Endocrinol ; 261(2)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492310

RESUMEN

Estrogen deficiency is one of the main causes for postmenopausal osteoporosis. Current osteoporotic therapies are of high cost and associated with serious side effects. So there is an urgent need for cost-effective anti-osteoporotic agents. Anti-osteoporotic activity of Litsea glutinosa extract (LGE) is less explored. Moreover, its role in fracture healing and mechanism of action is still unknown. In the present study we explore the osteoprotective potential of LGE in osteoblast cells and fractured and ovariectomized (Ovx) mice models. Alkaline phosphatase (ALP), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and mineralization assays revealed that LGE treatment increased osteoblast cell differentiation, viability and mineralization. LGE treatment at 0.01 µg increased the expression of BMP2, PSMAD, RUNX2 and type 1 col. LGE also mitigated RANKL-induced osteoclastogenesis. Next, drill hole injury Balb/C mice model was treated with LGE for 12 days. Micro-CT analysis and Calcein labeling at the fracture site showed that LGE (20 mg/kg) enhanced new bone formation and bone regeneration, also increased expression of BMP2/SMAD1 signaling genes at fracture site. Ovx mice were treated with LGE for 1 month. µCT analysis indicated that the treatment of LGE at 20 mg/kg dose prevented the alteration in bone microarchitecture and maintained bone mineral density and bone mineral content. Treatment also increased bone strength and restored the bone turnover markers. Furthermore, in bone samples, LGE increased osteogenesis by enhancing the expression of BMP2/SMAD1 signaling components and decreased osteoclast number and surface. We conclude that LGE promotes osteogenesis via modulating the BMP2/SMAD1 signaling pathway. The study advocates the therapeutic potential of LGE in osteoporosis treatment.


Asunto(s)
Enfermedades Óseas Metabólicas , Litsea , Ratones , Animales , Femenino , Humanos , Curación de Fractura , Osteogénesis , Enfermedades Óseas Metabólicas/metabolismo , Transducción de Señal , Osteoblastos/metabolismo , Diferenciación Celular , Ovariectomía , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...