Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(18): 5015-5028, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705767

RESUMEN

Theoretical and micromagnetic simulation studies of magnetic nanospheres with vortex configurations suggest that such nanostructured materials have technological advantages over conventional nanosystems for applications based on high-power-rate absorption and subsequent emission. However, full experimental evidence of magnetic vortex configurations in spheres of submicrometer size is still lacking. Here, we report the microwave irradiation fabrication of Fe3O4 nanospheres and establish their magnetic vortex configuration based on experimental results, theoretical analysis, and micromagnetic simulations. Detailed magnetic and electrical measurements, together with Mössbauer spectroscopy data, provide evidence of a loss of stoichiometry in vortex nanospheres owing to the presence of a surface oxide layer, defects, and a higher concentration of cation vacancies. The results indicate that the magnetic vortex spin configuration can be established in bulk spherical magnetite materials. This study provides crucial information that can aid the synthesis of magnetic nanospheres with magnetically tailored properties; consequently, they may be promising candidates for future technological applications based on three-dimensional magnetic vortex structures.

2.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202844

RESUMEN

The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Extractos Vegetales/farmacología , Plantas Medicinales/química , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/inmunología , Antivirales/uso terapéutico , Simulación por Computador , Humanos , Agricultura Molecular/métodos , Extractos Vegetales/química , Extractos Vegetales/inmunología , Extractos Vegetales/uso terapéutico , Plantas Medicinales/inmunología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
3.
Phys Chem Chem Phys ; 19(28): 18660-18670, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28695926

RESUMEN

Luminescence-tunable multicolored LaF3:xCe3+,xGd3+,yEu3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF3:xCe3+,xGd3+,yEu3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce3+, Gd3+, and Eu3+ dopants in the LaF3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu2+, corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f(2F5/2) → 5d state (Ce3+) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f65d1 (Eu2+) and 5D0 (Eu3+) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd3+ ion sub-lattice as the bridge and finally trapping by Eu2+/3+, upon excitation of the Ce3+ ion. The calculation of experimental intensity parameters (Ω2,4) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu2+/Eu3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

4.
Int J Part Ther ; 4(2): 1-10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31773003

RESUMEN

PURPOSE: Brachytherapy is essential for local treatment in cervical carcinoma, but some patients are not suitable for it. Presently, for these patients, the authors prefer a boost by using intensity-modulated radiation therapy (IMRT). The authors evaluated the dosimetric comparison of proton-modulated radiation therapy versus IMRT and volumetric-modulated arc therapy (VMAT) as a boost to know whether protons can replace photons. PATIENTS AND METHODS: Five patients who received external beam radiation therapy to the pelvis by IMRT were reviewed. Three different plans were made, including pencil beam scanning (PBS), IMRT, and VMAT. The prescribed planning target volume (PTV) was 20 Gy in 4 fractions. The dose to 95% PTV (D95%), the conformity index, and the homogeneity index were evaluated for PTV. The Dmax, D2cc, and Dmean were evaluated for organs at risk along with the integral dose of normal tissue and organs at risk. RESULTS: The PTV coverage was optimal and homogeneous with modulated protons and photons. For PBS, coverage D95% was 20.01 ± 0.02 Gy (IMRT, 20.08 ± 0.06 Gy; VMAT, 20.1 ± 0.04 Gy). For the organs at risk, Dmax of the bladder for PBS was 21.05 ± 0.05 Gy (IMRT, 20.8 ± 0.21 Gy; VMAT, 21.65 ± 0.41 Gy) while the Dmax for the rectum for PBS was 21.04 ± 0.03 Gy (IMRT, 20.81 ± 0.12 Gy; VMAT, 21.66 ± 0.38 Gy). Integral dose to normal tissues in PBS was 14.17 ± 2.65 Gy (IMRT, 25.29 ± 6.35 Gy; VMAT, 25.24 ± 6.24 Gy). CONCLUSIONS: Compared with photons, modulated protons provide comparable conformal plans. However, PBS reduces the integral dose to critical structures significantly compared with IMRT and VMAT. Although PBS may be a better alternative for such cases, further research is required to substantiate such findings.

5.
J Cancer Res Ther ; 11(4): 746-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26881512

RESUMEN

OBJECTIVE: Conformal radiation therapy mandates accurate delineation of target volumes, which requires incorporation of modern imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET) in addition to conventionally used computed tomography (CT). This can resolve discrepancies in target delineation in head and neck carcinomas resulting in better local control. We hereby report the comparison of Gross Tumor Volumes (GTVs) (primary) drawn using PET, CT and MRI and their concordance indices. METHODS AND MATERIAL: Twenty five patients with head and neck cancer were taken into this study. MRI, PET and CT planning scans were done as per standard guidelines. Three sets of primary GTVs namely GTV- PET, GTV-CT and GTV-MRI were contoured on fused images. All the three volumes and concordances among the volumes were analyzed. RESULT: The mean GTV-CT, GTV-PET and GTV-MRI volumes were 29.65 cc ± 31.27, 32.05 cc ± 33.75 and 24.85 cc ± 25.28 respectively. There was a significant difference in the GTV-MRI & GTV-CT volumes (P = 0.023) and GTV-PET & GTV-MRI volumes (P = 0.049). However, there was no significant difference in the GTV-PET & GTV-CT volume (P = 0.468). The mean CI (PET-MRI), CI (CT-MRI) and CI (PET-CT) was 0.42, 0.46 and 0.47 respectively, which depicts a moderate concordance. CONCLUSION: PET and MRI are useful imaging tools in head and neck malignancies and should be used in conjunction with CT scan for improved target volume delineation.


Asunto(s)
Carcinoma de Células Escamosas/patología , Quimioradioterapia , Neoplasias de Cabeza y Cuello/patología , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/terapia , Femenino , Fluorodesoxiglucosa F18 , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/terapia , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Radiofármacos , Carga Tumoral
6.
Indian J Med Res ; 138(5): 663-81, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24434320

RESUMEN

Studies on host genomics have revealed the existence of identifiable HIV-1 specific protective factors among infected individuals who remain naturally resistant viraemia controllers with little or no evidence of virus replication. These factors are broadly grouped into those that are immune associated (MHC, chemokines, cytokines, CTLs and others), linked to viral entry (chemokine co-receptors and ligands), act as post-entry restriction elements (TRIM5a, APOBEC3) and those associated with viral replication (cytokines and others). These features have been identified through multiple experimental approaches ranging from candidate gene approaches, genome wide association studies (GWAS), expression analysis in conjunction with functional assays in humans to primate based models. Several studies have highlighted the individual and population level gross differences both in the viral clade sequences as well as host determined genetic associations. This review collates current information on studies involving major histocompatibility complex (MHC) as well as non MHC genes in the context of HIV-1 infection and AIDS involving varied ethnic groups. Special focus of the review is on the genetic studies carried out on the Indian population. Further challenges with regard to therapeutic interventions based on current knowledge have been discussed along with discussion on documented cases of stem cell therapy and very early highly active antiretroviral therapy (HAART) interventions.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , Resistencia a la Enfermedad/genética , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Síndrome de Inmunodeficiencia Adquirida/terapia , Síndrome de Inmunodeficiencia Adquirida/virología , Terapia Antirretroviral Altamente Activa , Quimiocinas/genética , Citocinas/genética , Resistencia a la Enfermedad/inmunología , Estudio de Asociación del Genoma Completo , VIH-1/genética , VIH-1/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Viremia/genética , Viremia/inmunología , Viremia/virología
7.
Rev Sci Instrum ; 82(10): 106103, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22047341

RESUMEN

The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 µS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...