Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cancer Prev ; 26(1): 71-82, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33842408

RESUMEN

The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.

2.
Aging Cell ; 18(3): e12943, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30924297

RESUMEN

Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age-related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age-related muscle atrophy, and GDF signaling is a proposed mechanism.


Asunto(s)
Envejecimiento/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Estrés Oxidativo , Animales , Células Cultivadas , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
J Gerontol A Biol Sci Med Sci ; 71(2): 153-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25568097

RESUMEN

Age-associated decline in organ function governs life span. We determined the effect of aging on lung function and cellular/molecular changes of 8- to 32-month old mice. Proteomic analysis of lung matrix indicated significant compositional changes with advanced age consistent with a profibrotic environment that leads to a significant increase in dynamic compliance and airway resistance. The excess of matrix proteins deposition was associated modestly with the activation of myofibroblasts and transforming growth factor-beta signaling pathway. More importantly, detection of senescent cells in the lungs increased with age and these cells contributed toward the excess extracellular matrix deposition observed in our aged mouse model and in elderly human samples. Mechanistic target of rapamycin (mTOR)/AKT activity was enhanced in aged mouse lungs compared with those from younger mice associated with the increased expression of the histone variant protein, MH2A, a marker for aging and potentially for senescence. Introduction in the mouse diet of rapamycin, significantly blocked the mTOR activity and limited the activation of myofibroblasts but did not result in a reduction in lung collagen deposition unless it was associated with prevention of cellular senescence. Together these data indicate that cellular senescence significantly contributes to the extracellular matrix changes associated with aging in a mTOR 1-dependent mechanism.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Senescencia Celular/fisiología , Pulmón/metabolismo , Actinas/metabolismo , Adulto , Anciano , Envejecimiento/fisiología , Animales , Biomarcadores/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteómica , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tenascina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Cancer Prev Res (Phila) ; 8(5): 400-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25736275

RESUMEN

Cancer prevention is a cost-effective alternative to treatment. In mice, the mTOR inhibitor rapamycin prevents distinct spontaneous, noninflammatory cancers, making it a candidate broad-spectrum cancer prevention agent. We now show that oral microencapsulated rapamycin (eRapa) prevents skin cancer in dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) carcinogen-induced, inflammation-driven carcinogenesis. eRapa given before DMBA/TPA exposure significantly increased tumor latency, reduced papilloma prevalence and numbers, and completely inhibited malignant degeneration into squamous cell carcinoma. Rapamycin is primarily an mTORC1-specific inhibitor, but eRapa did not reduce mTORC1 signaling in skin or papillomas, and did not reduce important proinflammatory factors in this model, including p-Stat3, IL17A, IL23, IL12, IL1ß, IL6, or TNFα. In support of lack of mTORC1 inhibition, eRapa did not reduce numbers or proliferation of CD45(-)CD34(+)CD49f(mid) skin cancer initiating stem cells in vivo and marginally reduced epidermal hyperplasia. Interestingly, eRapa reduced DMBA/TPA-induced skin DNA damage and the hras codon 61 mutation that specifically drives carcinogenesis in this model, suggesting reduction of DNA damage as a cancer prevention mechanism. In support, cancer prevention and DNA damage reduction effects were lost when eRapa was given after DMBA-induced DNA damage in vivo. eRapa afforded picomolar concentrations of rapamycin in skin of DMBA/TPA-exposed mice, concentrations that also reduced DMBA-induced DNA damage in mouse and human fibroblasts in vitro. Thus, we have identified DNA damage reduction as a novel mechanism by which rapamycin can prevent cancer, which could lay the foundation for its use as a cancer prevention agent in selected human populations.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinógenos , Daño del ADN/efectos de los fármacos , Inflamación , Sirolimus/administración & dosificación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Células 3T3 , 9,10-Dimetil-1,2-benzantraceno , Administración Oral , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Células Cultivadas , Quimioprevención , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética
5.
Cancer Cell ; 24(2): 197-212, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23948299

RESUMEN

A causal role of gene amplification in tumorigenesis is well known, whereas amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control the transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in estrogen receptor-α-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Elementos de Respuesta , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Amplificación de Genes , Genómica , Humanos
6.
Gene ; 458(1-2): 37-44, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20347019

RESUMEN

Estrogen receptors (ER), members of the nuclear steroid receptor superfamily, act to activate transcription through ligand-dependent recruitment of coregulators and chromatin modifications. A series of synthetic A-ring reduced 19-nortestosterone-derived progestins has the capacity to selectively bind ERalpha for activated transcription, and to recruit coregulatory factors. In this study, we have analyzed the ability of synthetic 19-nortestosterone derivatives to visibly alter the configuration of ER-target gene chromatin using a novel mammalian promoter transcriptional biosensor (PRL-array) stably transfected into the genome of HeLa cells (PRL-HeLa cells). Results from synthetic steroid-treated cells expressing functional GFP-ERalpha or YFP-ERbeta chimeras were compared to those obtained with estradiol (E(2)) and the antiestrogen tamoxifen. In the presence of synthetic ligands or E(2) a concentration-dependent increase in area of the biosensor array was observed in GFP-ERalpha-expressing PRL-HeLa cells. No significant differences were found between the effects obtained with natural and synthetic steroids. Similarly, E(2) or synthetic steroids-treated PRL-HeLa cells also resulted in similar colocalization of SRC-1- and RNAPII-immunofluorescence at the array. YFP-ERbeta-expressing PRL-HeLa cells treated with E(2) showed increases in array area that were similar to ERalpha; however, treatment of YFP-ERbeta-expressing cells with synthetic ligands was indistinguishable from vehicle controls. These data indicate that A-ring reduced 19-nortestosterone derivatives have an estrogen-like effect on chromatin, including recruitment of transcription factors through selective interactions with ERalpha.


Asunto(s)
Técnicas Biosensibles , Cromatina/metabolismo , Receptores de Estrógenos/metabolismo , Cromatina/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Células HeLa , Humanos , Ligandos , Nandrolona/farmacología , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Receptores de Estrógenos/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...