Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(56): 118976-118988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922087

RESUMEN

The COVID-19 pandemic has emphasized the urgency for rapid public health surveillance methods to detect and monitor the transmission of infectious diseases. The wastewater-based epidemiology (WBE) has emerged as a promising tool for proactive analysis and quantification of infectious pathogens within a population before clinical cases emerge. In the present study, we aimed to assess the trend and dynamics of SARS-CoV-2 variants using a longitudinal approach. Our objective included early detection and monitoring of these variants to enhance our understanding of their prevalence and potential impact. To achieve our goals, we conducted real-time quantitative polymerase chain reaction (RT-qPCR) and Illumina sequencing on 442 wastewater (WW) samples collected from 10 sewage treatment plants (STPs) in Pune city, India, spanning from November 2021 to April 2022. Our comprehensive analysis identified 426 distinct lineages representing 17 highly transmissible variants of SARS-CoV-2. Notably, fragments of Omicron variant were detected in WW samples prior to its first clinical detection in Botswana. Furthermore, we observed highly contagious sub-lineages of the Omicron variant, including BA.1 (~28%), BA.1.X (1.0-72%), BA.2 (1.0-18%), BA.2.X (1.0-97.4%) BA.2.12 (0.8-0.25%), BA.2.38 (0.8-1.0%), BA.2.75 (0.01-0.02%), BA.3 (0.09-6.3%), BA.4 (0.24-0.29%), and XBB (0.01-21.83%), with varying prevalence rates. Overall, the present study demonstrated the practicality of WBE in the early detection of SARS-CoV-2 variants, which could help track future outbreaks of SARS-CoV-2. Such approaches could be implicated in monitoring infectious agents before they appear in clinical cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , India , Genómica , Aguas Residuales
2.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331277

RESUMEN

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Filogenia , India/epidemiología , Genómica
3.
Science ; 380(6652): 1303, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384710

RESUMEN

Since April, India has been roiled by controversy around the excision of several topics, including evolution and the periodic table, from school textbooks (up to grade 10) by the National Council for Educational Research and Training (NCERT). This was projected as an exercise in "rationalization" of content aimed at reducing the study load on students. The move was opposed by large numbers of academics and worried citizens. As the exclusion of specific topics in history and contemporary politics appeared to be in line with the ideology of the ruling party, many critics assumed that the removal of science topics was also ideologically motivated. In turn, this spurred supporters of NCERT and the government to dismiss all criticism as being entirely political, rather than academic. Both sides in this debate have traded exaggerated accusations of mala fide intent, leading to crucial broader issues being obscured.

4.
J Mol Evol ; 91(5): 616-627, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341745

RESUMEN

Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.

5.
JCO Glob Oncol ; 9: e2200176, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657087

RESUMEN

On January 13th and 14th 2022, the Center for Translational Cancer Research organized the virtual third Indian Cancer Genome Atlas (ICGA) Conference 2022 "Biobanking to Omics - Collecting the Global Experience." This conference was planned as the steppingstone to help ICGA understand the road ahead and the probable roadblocks in its preparatory phase as ICGA begins to streamline the tumor tissue biobanking and multi-omics efforts in the Indian subcontinent. The first day of the conference was dedicated to updates on the current status of ICGA, the future prospect, and the global understanding of multi-omics efforts. The key highlights included two keynote speeches by Dr Wui Jin Koh, Senior Vice President and Chief Medical Office, National Comprehensive Cancer Network, and by Dr Christina Curtis, Associate Professor, Stanford University School of Medicine. The first day ended with an intriguing panel discussion on "ICGA updates and Future Steps." The second day focused on biobanking practices across the globe and several aspects of biobank setup such as infrastructure, maintenance, quality control, patient consent, and lessons learned from established biobanking setups. The talk by Rosita Kammler, Head, Translational Research Coordination, International Breast Cancer Study Group, Switzerland, and Ruhul Amin, Director, Bangladesh Medical Research Council were the key highlights. The second day also ended with an engaging panel discussion on "Tumor tissue biobanking - national and international perspectives." Overall, the conference was well received and had good attendance from national and international students, researchers, and faculty from academia as well as industry.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Bangladesh
6.
Diagn Pathol ; 17(1): 91, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411483

RESUMEN

OBJECTIVES: Evaluation of tumor-infiltrating lymphocytes (TILs) distribution in an Indian cohort of breast cancer patients for its prognostic significance. METHODS: A retrospective cohort of breast cancer patients from a single onco-surgeon's breast cancer clinic with a uniform treatment strategy was evaluated for TILs. Tumor sections were H&E stained and scored for the spatial distribution and percent stromal TILs infiltration by a certified pathologist. The scores were analysed for association with treatment response and survival outcomes across molecular subtypes. RESULTS: Total 229 breast cancer tumors were evaluated. Within spatial distribution categories, intra-tumoral TILs were observed to be associated with complete pathological response and lower recurrence frequency for the entire cohort. Subtype-wise analysis of stromal TILs (sTILs) re-enforced significantly higher infiltration in TNBC compared to HER2-positive and ER-positive tumors. A favourable association of higher stromal infiltration was observed with treatment response and disease outcomes, specifically in TNBC. CONCLUSION: Intra-tumoral TILs showed a higher proportion with favourable association with better patient outcomes in an Indian cohort, unlike western cohorts where both stromal and intra-tumoral TILs show similar association with prognosis. With further validation, TILs can be developed as a cost-effective surrogate marker for treatment response, especially in a low-resource setting such as India.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias de la Mama Triple Negativas , Humanos , Linfocitos Infiltrantes de Tumor/patología , Neoplasias de la Mama Triple Negativas/patología , Estudios Retrospectivos , Pronóstico
7.
IJID Reg ; 2: 74-81, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35721428

RESUMEN

Objective: To assess trends in case incidence and fatality rate between the first and second waves, we analyzed programmatic COVID-19 data from Pune city, an epicenter of COVID-19 cases in India. Method: The trends of cases incidence, time-to-death and case fatality rate (CFR) were analyzed. Poisson regression models adjusted for age and gender were used to determine the independent effect of pandemic waves on mortality. Results: Of 465 192 COVID-19 cases, 162 182 (35%) were reported in the first wave and 4146 (2.5%) deaths, and 275 493 (59%) in the second wave and 3184 (1.1%) deaths (P<0.01). The overall CFR was 1.16 per 1000 person-days (PD), which declined from 1.80 per 1000 PD during the first wave to 0.77 per 1000 PD in the second. The risk of death was 1.49 times higher during the first wave (adjusted CFR ratio (aCFRR)1.49; 95% CI: 1.37-1.62) and 35% lower in the second wave (aCFRR 0.65; 95% CI: 0.59-0.70). Conclusion: The burden of COVID-19 cases and deaths was more significant in the second wave; however, the CFR declined as the pandemic progressed. Nevertheless, investigating new therapies and implementing mass vaccination against COVID-19 are urgently needed.

8.
Front Cell Dev Biol ; 9: 713282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368162

RESUMEN

Developmental processes have to be robust but also flexible enough to respond to genetic and environmental variations. Different mechanisms have been described to explain the apparent antagonistic nature of developmental robustness and plasticity. Here, we present a "self-sufficient" molecular model to explain the development of a particular flight organ that is under the control of the Hox gene Ultrabithorax (Ubx) in the fruit fly Drosophila melanogaster. Our model is based on a candidate RNAi screen and additional genetic analyses that all converge to an autonomous and cofactor-independent mode of action for Ubx. We postulate that this self-sufficient molecular mechanism is possible due to an unusually high expression level of the Hox protein. We propose that high dosage could constitute a so far poorly investigated molecular strategy for allowing Hox proteins to both innovate and stabilize new forms during evolution.

9.
Cancer Treat Res Commun ; 28: 100409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34098400

RESUMEN

BACKGROUND: A breast cancer biobank with retrospectively collected patient data and FFPE tissue samples was established in 2018 at Prashanti Cancer Care Mission, Pune, India. It runs a cancer care clinic with support from a single surgeon's breast cancer practice. The clinical data and tissue sample collection is undertaken with appropriate patient consent following ethical approval and guidelines. METHODS: The biobank holds clinical history, diagnostic reports, treatment and follow-up information along with FFPE tumor tissue specimens, adjacent normal and, in few cases, contralateral normal breast tissue. Detailed family history and germline mutational profiles of eligible and consenting patients and their relatives are also deposited in the biobank. RESULTS: Here, we report the first audit of the biobank. A total number of 994 patients with breast disease have deposited consented clinical records in the biobank. The majority of the records (80%, n = 799) are of patients with infiltrating ductal carcinoma (IDC). Of 799 IDC patients, 434 (55%) have deposited tumor tissue in the biobank with consent. In addition, germline mutation profiles of 84 patients and their family members are deposited. Follow-up information is available for 85% of the 434 IDC patients with an average follow-up of 3 years. CONCLUSION: The biobank has aided the initiation of translational research at our center in collaboration with eminent institutes like IISER Pune and SJRI Bangalore to evaluate profiles of breast cancer in an Indian cohort. The biobank will be a valuable resource to the breast cancer research community, especially to understand South Asian profiles of breast cancer.


Asunto(s)
Bancos de Tejidos/normas , Neoplasias de la Mama/mortalidad , Estudios de Cohortes , Femenino , Humanos , India , Persona de Mediana Edad , Análisis de Supervivencia
10.
Nat Commun ; 12(1): 2892, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001903

RESUMEN

Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


Asunto(s)
Proteína con Homeodominio Antennapedia/genética , Proteínas de Drosophila/genética , Vuelo Animal , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Proteína con Homeodominio Antennapedia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
11.
G3 (Bethesda) ; 10(9): 2999-3008, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737065

RESUMEN

Genetic approaches in Drosophila have successfully identified many genes involved in regulation of growth control as well as genetic interactions relevant to the initiation and progression of cancer in vivo Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into neoplastic transformation in vivo We also report on an independent screen aimed to identify genes whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent neoplasia model. Many of the positives identified here are known to be functional in growth control pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, mostly unique to one of the two. Thus, resources provided here would be useful to all researchers who study negative regulators of growth during development and cancer in the context of activated EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources reported here are available freely for anyone to use.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Supresores de Tumor , Neoplasias/genética , Proteínas Nucleares/genética , Transducción de Señal , Transactivadores/metabolismo
12.
Genetics ; 216(1): 67-77, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32737120

RESUMEN

Promoter proximal pausing (PPP) of RNA polymerase II has emerged as a crucial rate-limiting step in the regulation of gene expression. Regulation of PPP is brought about by complexes 7SK snRNP, P-TEFb (Cdk9/cycT), and the negative elongation factor (NELF), which are highly conserved from Drosophila to humans. Here, we show that RNAi-mediated depletion of bin3 or Hexim of the 7SK snRNP complex or depletion of individual components of the NELF complex enhances Yki-driven growth, leading to neoplastic transformation of Drosophila wing imaginal discs. We also show that increased CDK9 expression cooperates with Yki in driving neoplastic growth. Interestingly, overexpression of CDK9 on its own or in the background of depletion of one of the components of 7SK snRNP or the NELF complex necessarily, and specifically, needed Yki overexpression to cause tumorous growth. Genome-wide gene expression analyses suggested that deregulation of protein homeostasis is associated with tumorous growth of wing imaginal discs. As both Fat/Hippo/Yki pathway and PPP are highly conserved, our observations may provide insights into mechanisms of oncogenic function of YAP-the ortholog of Yki in humans.


Asunto(s)
Carcinogénesis/genética , Proteínas de Drosophila/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Animales , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
13.
Int J Dev Biol ; 64(1-2-3): 159-165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32659004

RESUMEN

Differential specification of dorsal flight appendages, wing and haltere, in Drosophila provides an excellent model system to address a number of important questions in developmental biology at the levels of molecules, pathways, tissues, organs, organisms and evolution. Here we discuss the mechanism by which the Hox protein Ubx recognizes and regulates its downstream targets, implications of the same in growth control at cellular and organ level and finally the evolution of haltere from ancestral hindwings in other holometabolous insects.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/metabolismo , Organogénesis , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Alas de Animales/fisiología , Animales , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alas de Animales/anatomía & histología
14.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29853618

RESUMEN

Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Matriz Extracelular/metabolismo , Proteínas de Homeodominio/biosíntesis , Discos Imaginales/embriología , Metaloproteinasa 1 de la Matriz/metabolismo , Factores de Transcripción/biosíntesis , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Matriz Extracelular/genética , Proteínas de Homeodominio/genética , Metaloproteinasa 1 de la Matriz/genética , Factores de Transcripción/genética
15.
Development ; 144(5): 905-915, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174239

RESUMEN

The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin 2-binding protein 1 (A2BP1) during this process. Its human ortholog is linked to type 2 spinocerebellar ataxia and other complex neuronal disorders. Downregulation of Drosophila A2BP1 in the proneural cluster increases adult sensory bristle number, whereas its overexpression results in loss of bristles. We show that A2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, biochemical analysis shows that A2BP1 is part of the Suppressor of Hairless [Su(H)] complex in the presence and absence of Notch. However, in the absence of Notch signaling, the A2BP1 interacting fraction of Su(H) does not associate with the repressor proteins Groucho and CtBP. We propose a model explaining the requirement of A2BP1 as a positive regulator of context-specific Notch activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurogénesis , Proteínas de Unión al ARN/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Animales , Cruzamientos Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Fenotipo , Órganos de los Sentidos , Factores de Transcripción/metabolismo
16.
Sci Rep ; 6: 27885, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27296678

RESUMEN

In the fruitfly Drosophila melanogaster, the differential development of wing and haltere is dependent on the function of the Hox protein Ultrabithorax (Ubx). Here we compare Ubx-mediated regulation of wing patterning genes between the honeybee, Apis mellifera, the silkmoth, Bombyx mori and Drosophila. Orthologues of Ubx are expressed in the third thoracic segment of Apis and Bombyx, although they make functional hindwings. When over-expressed in transgenic Drosophila, Ubx derived from Apis or Bombyx could suppress wing development, suggesting evolutionary changes at the level of co-factors and/or targets of Ubx. To gain further insights into such events, we identified direct targets of Ubx from Apis and Bombyx by ChIP-seq and compared them with those of Drosophila. While majority of the putative targets of Ubx are species-specific, a considerable number of wing-patterning genes are retained, over the past 300 millions years, as targets in all the three species. Interestingly, many of these are differentially expressed only between wing and haltere in Drosophila but not between forewing and hindwing in Apis or Bombyx. Detailed bioinformatics and experimental validation of enhancer sequences suggest that, perhaps along with other factors, changes in the cis-regulatory sequences of earlier targets contribute to diversity in Ubx function.


Asunto(s)
Abejas , Bombyx , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Evolución Biológica , Hibridación Genómica Comparativa , Biología Computacional , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Organogénesis , Especificidad de la Especie , Factores de Transcripción/genética
17.
Mech Dev ; 138 Pt 2: 198-209, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26299254

RESUMEN

In Drosophila, differential development of wing and haltere, which differ in cell size, number and morphology, is dependent on the function of Hox gene Ultrabithorax (Ubx). Here we report our studies on Ubx-mediated regulation of the Fat/Hippo and IIS/dAkt pathways, which control cell number and cell size during development. Over-expression of Yki or down regulation of negative components of the Fat/Hippo pathway, such as expanded, caused considerable increase in haltere size, mainly due to increase in cell number. These phenotypes were also associated with the activation of Akt pathways in developing haltere. Although activation of Akt alone did not affect the cell size or the organ size, we observed dramatic increase in haltere size when Akt was activated in the background where expanded is down regulated. This was associated with the increase in both cell size and cell number. The organ appeared flatter than wildtype haltere and the trichome morphology and spacing resembled that of wing suggesting homeotic transformations. Thus, our results suggest a link between cellular growth and pattern formation and the final differentiated state of the organ.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila/genética , Genes Homeobox/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Animales , Diferenciación Celular/genética , Regulación hacia Abajo/genética , Drosophila/embriología , Proteínas de Homeodominio/genética , Morfogénesis/genética , Tamaño de los Órganos , Alas de Animales/embriología
18.
Methods Mol Biol ; 1196: 241-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25151168

RESUMEN

Chromatin immunoprecipitation (ChIP) is a technique that reveals in vivo location of a protein bound to DNA. ChIP coupled with DNA microarrays (ChIP-chip) or next-generation sequencing (ChIP-seq) allows for identification of binding sites of transcription factors on a global scale. Here we describe a protocol for ChIP to identify binding of the Ultrabithorax (Ubx) Hox transcription factors from imaginal discs of Drosophila larvae. The protocol can be extended to other model organisms and transcription factors.


Asunto(s)
Inmunoprecipitación de Cromatina , Drosophila/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Discos Imaginales/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/métodos
19.
Dev Biol ; 368(1): 76-85, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22627290

RESUMEN

Border Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being critical in this process. Clonal and live analysis showed a requirement of dapc1 in both outer border cells and contacting stretched cells for delamination. This mutant phenotype was rescued by dapc1 or dapc2 expression. Loss of dapc1 function was associated with an abnormal lasting accumulation of ß-catenin/Armadillo and E-cadherin at the boundary between migrating border and stretched cells. Moreover, ß-catenin/armadillo or E-cadherin downregulation rescued the dapc1 loss of function phenotype. Altogether these results indicate that Drosophila Apc1 is required for dynamic remodeling of ß-catenin/Armadillo and E-cadherin adhesive complexes between outer border cells and stretched cells regulating proper delamination and invasion of migrating epithelial clusters.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Ovario/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Proteínas del Citoesqueleto , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Células Epiteliales/citología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Microscopía Confocal , Mutación , Oocitos/citología , Oocitos/metabolismo , Ovario/citología , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , beta Catenina/genética , beta Catenina/metabolismo
20.
Dev Cell ; 21(4): 601-2, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22014516

RESUMEN

In this issue of Developmental Cell, Odajima, Wills, and colleagues (2011) demonstrate that the cell-cycle regulator, cyclin E, sequesters Cdk5, a key regulator of neuronal development and synaptic plasticity. This cell-cycle-independent function of cyclin E reveals an exciting mode of Cdk5 regulation in postmitotic neurons and offers a window into evolutionary parsimony.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA