Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(3): e25603, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497661

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. Hippocampal area CA2 is known to play a key role in these behaviors in mice and responds to social stimuli in rats, but CA2 has yet to be characterized in hamsters or voles, which are also used in studies of social behaviors. Here, we used immunofluorescence to determine whether CA2 could be molecularly identified in tissue from voles and hamsters. We found that  staining for many CA2 markers was similar in these three species, with labeling seen in neurons at the distal end of the mossy fibers . In contrast, although perineuronal nets (PNNs) surround CA2 cells in mice, PNN staining differed across species. In voles, both CA2 and CA3 were labeled, whereas in hamsters, labeling was seen primarily in CA3. These results demonstrate that CA2 can be molecularly distinguished from neighboring CA1 and CA3 areas in voles and hamsters with several antibodies commonly used in mice. However, PNN staining is not useful for identifying CA2 in voles or hamsters, suggestive of differing roles for either PNNs or for the hippocampal subregions in social behavior. These findings reveal commonalities across species in the molecular profile of CA2 and should facilitate future studies of CA2 in these species.


Asunto(s)
Encéfalo , Conducta Social , Cricetinae , Ratones , Ratas , Animales , Anticuerpos , Arvicolinae , Hipocampo
2.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405991

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and rats (Rattus norvegicus, for example) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. The CA2 region of the hippocampus is known to play a key role in social memory and aggression in mice and responds to social stimuli in rats, likely owing to its high expression of oxytocin and vasopressin 1b receptors. However, CA2 has yet to be identified and characterized in hamsters or voles. In this study, we sought to determine whether CA2 could be identified molecularly in vole and hamster. To do this, we used immunofluorescence with primary antibodies raised against known molecular markers of CA2 in mice and rats to stain hippocampal sections from voles and hamsters in parallel with those from mice. Here, we report that, like in mouse and rat, staining for many CA2 proteins in vole and hamster hippocampus reveals a population of neurons that express regulator of G protein signaling 14 (RGS14), Purkinje cell protein 4 (PCP4) and striatal-enriched protein tyrosine phosphatase (STEP), which together delineate the borders with CA3 and CA1. These cells were located at the distal end of the mossy fiber projections, marked by the presence of Zinc Transporter 3 (ZnT-3) and calbindin in all three species. In addition to staining the mossy fibers, calbindin also labeled a layer of CA1 pyramidal cells in mouse and hamster but not in vole. However, Wolframin ER transmembrane glycoprotein (WFS1) immunofluorescence, which marks all CA1 neurons, was present in all three species and abutted the distal end of CA2, marked by RGS14 immunofluorescence. Staining for two stress hormone receptors-the glucocorticoid (GR) and mineralocorticoid (MR) receptors-was also similar in all three species, with GR staining found primarily in CA1 and MR staining enriched in CA2. Interestingly, although perineuronal nets (PNNs) are known to surround CA2 cells in mouse and rat, we found that staining for PNNs differed across species in that both CA2 and CA3 showed staining in voles and primarily CA3 in hamsters with only some neurons in proximal CA2 showing staining. These results demonstrate that, like in mouse, CA2 in voles and hamsters can be molecularly distinguished from neighboring CA1 and CA3 areas, but PNN staining is less useful for identifying CA2 in the latter two species. These findings reveal commonalities across species in molecular profile of CA2, which will facilitate future studies of CA2 in these species. Yet to be determined is how differences in PNNs might relate to differences in social behavior across species.

3.
Behav Brain Res ; 462: 114881, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38272188

RESUMEN

It has been hypothesized that oxytocin increases the salience of social stimuli, whether the valence is positive or negative, through its interactions with the ventral tegmental area (VTA). Indeed, oxytocin neurons project to the VTA and activate dopamine neurons that are necessary for social experiences with positive valence. Surprisingly, though, there has not been an investigation of the role of oxytocin in the VTA in mediating social experiences with negative valence (e.g., social stress). Given that there are sex differences in how oxytocin regulates the salience of positively-valenced social interactions, we hypothesized that oxytocin acting in the VTA also alters the salience of social stress in a sex-dependent manner. To test this, female and male Syrian hamsters were site-specifically infused with either saline, oxytocin (9 µM), or oxytocin receptor antagonist (90 µM) into the VTA. Subjects were then exposed to either no defeat or a single, 15 min defeat by one RA. The day following social defeat, subjects underwent a 5 min social avoidance test. There was an interaction between sex and drug treatment, such that the oxytocin antagonist increased social avoidance compared to saline treatment in socially stressed females, while oxytocin decreased social avoidance compared to saline treatment in socially stressed males. Contrary to expectations, these results suggest that oxytocin signaling generally acts to decrease social avoidance, regardless of sex. These sex differences in the efficacy of oxytocin and oxytocin receptor antagonists to alter negatively-valenced social stimuli, however, should be considered when guiding pharmacotherapies for disorders involving social deficits.


Asunto(s)
Oxitocina , Área Tegmental Ventral , Cricetinae , Animales , Femenino , Masculino , Humanos , Oxitocina/farmacología , Oxitocina/fisiología , Receptores de Oxitocina , Conducta Social , Mesocricetus , Antagonistas de Hormonas/farmacología , Estrés Psicológico , Neuronas Dopaminérgicas
4.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228646

RESUMEN

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


Asunto(s)
Región CA2 Hipocampal/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/fisiopatología , Animales , Región CA2 Hipocampal/patología , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Matriz Extracelular/fisiología , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas , Síndrome de Rett/genética , Síndrome de Rett/patología
5.
Mol Psychiatry ; 26(1): 350-364, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31745235

RESUMEN

Mineralocorticoid receptors (MRs) in the brain play a role in learning and memory, neuronal differentiation, and regulation of the stress response. Within the hippocampus, the highest expression of MRs is in area CA2. CA2 pyramidal neurons have a distinct molecular makeup resulting in a plasticity-resistant phenotype, distinguishing them from neurons in CA1 and CA3. Thus, we asked whether MRs regulate CA2 neuron properties and CA2-related behaviors. Using three conditional knockout methods at different stages of development, we found a striking decrease in multiple molecular markers for CA2, an effect mimicked by chronic antagonism of MRs. Furthermore, embryonic deletion of MRs disrupted afferent inputs to CA2 and enabled synaptic potentiation of the normally LTP-resistant synaptic currents in CA2. We also found that CA2-targeted MR knockout was sufficient to disrupt social behavior and alter behavioral responses to novelty. Altogether, these results demonstrate an unappreciated role for MRs in controlling CA2 pyramidal cell identity and in facilitating CA2-dependent behaviors.


Asunto(s)
Células Piramidales/citología , Células Piramidales/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal , Fenotipo , Receptores de Mineralocorticoides/deficiencia , Receptores de Mineralocorticoides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...