Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2116289119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917342

RESUMEN

Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or ß-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.


Asunto(s)
Bloqueadores del Receptor Tipo 2 de Angiotensina II , Compuestos de Bencidrilo , Neoplasias Encefálicas , Reposicionamiento de Medicamentos , Glioblastoma , Isoquinolinas , Receptor de Angiotensina Tipo 2 , Analgésicos/farmacología , Angiotensina II/química , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/uso terapéutico , Apoptosis , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Conformación Proteica en Hélice alfa , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Carga Tumoral/efectos de los fármacos
3.
Nature ; 606(7915): 820-826, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676483

RESUMEN

γ-Aminobutyric acid (GABA) transporter 1 (GAT1)1 regulates neuronal excitation of the central nervous system by clearing the synaptic cleft of the inhibitory neurotransmitter GABA upon its release from synaptic vesicles. Elevating the levels of GABA in the synaptic cleft, by inhibiting GABA reuptake transporters, is an established strategy to treat neurological disorders, such as epilepsy2. Here we determined the cryo-electron microscopy structure of full-length, wild-type human GAT1 in complex with its clinically used inhibitor tiagabine3, with an ordered part of only 60 kDa. Our structure reveals that tiagabine locks GAT1 in the inward-open conformation, by blocking the intracellular gate of the GABA release pathway, and thus suppresses neurotransmitter uptake. Our results provide insights into the mixed-type inhibition of GAT1 by tiagabine, which is an important anticonvulsant medication. Its pharmacodynamic profile, confirmed by our experimental data, suggests initial binding of tiagabine to the substrate-binding site in the outward-open conformation, whereas our structure presents the drug stalling the transporter in the inward-open conformation, consistent with a two-step mechanism of inhibition4. The presented structure of GAT1 gives crucial insights into the biology and pharmacology of this important neurotransmitter transporter and provides blueprints for the rational design of neuromodulators, as well as moving the boundaries of what is considered possible in single-particle cryo-electron microscopy of challenging membrane proteins.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Inhibidores de Recaptación de GABA , Ácido gamma-Aminobutírico , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Microscopía por Crioelectrón , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/ultraestructura , Inhibidores de Recaptación de GABA/química , Inhibidores de Recaptación de GABA/farmacología , Humanos , Neurotransmisores/metabolismo , Conformación Proteica/efectos de los fármacos , Tiagabina/química , Tiagabina/metabolismo , Tiagabina/farmacología , Ácido gamma-Aminobutírico/metabolismo
4.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049877

RESUMEN

Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.


Asunto(s)
Encéfalo , Receptores de GABA-B , Encéfalo/metabolismo , Ligandos , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
Chemistry ; 26(47): 10690-10694, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32691857

RESUMEN

Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compound 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.


Asunto(s)
Angiotensina II/química , Angiotensina II/metabolismo , Mutación , Péptidos/genética , Receptores de Angiotensina/química , Receptores de Angiotensina/metabolismo , Aminoácidos/genética , Angiotensina II/genética , Animales , Células HEK293 , Humanos , Ligandos , Péptidos/química , Péptidos/metabolismo , Especificidad por Sustrato
6.
Nature ; 584(7820): 298-303, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32555460

RESUMEN

Metabotropic γ-aminobutyric acid receptors (GABAB) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis1. GABAB belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits2. Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABAB. Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-B/química , Receptores de GABA-B/ultraestructura , Regulación Alostérica/efectos de los fármacos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Sitios de Unión/efectos de los fármacos , Agonistas de Receptores GABA-B/química , Agonistas de Receptores GABA-B/metabolismo , Agonistas de Receptores GABA-B/farmacología , Humanos , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Receptores de GABA-B/metabolismo , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...