Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Rep ; 20(3): 42, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38343657

RESUMEN

Combining chemotherapy and hormone therapy is a prevalent approach in breast cancer treatment. While the cytotoxic impact of numerous chemotherapy drugs stems from DNA damage, the exact role of these DNA alterations in modulating estrogen receptor α (ERα) machinery remains elusive. The present study aimed to analyze the impact of DNA damage agents on ERα signaling in breast cancer cells and assess the signaling pathways mediating the influence of DNA damage drugs on the ERα machinery. Cell viability was assessed using the MTT method, while the expression of signaling proteins was analyzed by immunoblotting. ERα activity in the cells treated with various drugs (17ß-estradiol, tamoxifen, 5-fluorouracil) was assessed through reporter gene assays. In vitro experiments were conducted on MCF7 breast cancer cells subjected to varying durations of 5-fluorouracil (5-FU) treatment. Two distinct cell responses to 5-FU were identified based on the duration of the treatment. A singular dose of 5-FU induces pronounced DNA fragmentation, temporally suppressing ERα signaling while concurrently activating AKT phosphorylation. This suppression reverses upon 5-FU withdrawal, restoring normalcy within ten days. However, chronic 5-FU treatment led to the emergence of 5-FU-resistant cells with irreversible alterations in ERα signaling, resulting in partial hormonal resistance. These changes mirror those observed in cells subjected to UV-induced DNA damage, underscoring the pivotal role of DNA damage in shaping estrogen signaling alterations in breast cancer cells. In summary, the results of the present study suggested that the administration of DNA damage agents to cancer cells can trigger irreversible suppression of estrogen signaling, fostering the development of partial hormonal resistance. This outcome may ultimately impede the efficacy of combined or subsequent chemo- and hormone therapy strategies.

2.
Bioimpacts ; 13(4): 313-321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645026

RESUMEN

Introduction: Resistance to chemotherapy and/or irradiation remains one of the key features of malignant tumors, which largely limits the efficiency of antitumor therapy. In this work, we studied the progression mechanism of breast cancer cell resistance to target drugs, including mTOR blockers, and in particular, we studied the exosome function in intercellular resistance transfer. Methods: The cell viability was assessed by the MTT assay, exosomes were purified by successive centrifugations, immunoblotting was used to evaluate protein expression, AP-1 activity was analyzed using reporter assay. Results: In experiments on the MCF-7 cell line (breast cancer) and the MCF-7/Rap subline that is resistant to rapamycin, the capability of resistant cell exosomes to trigger a similar rapamycin resistance in the parent MCF-7 cells was demonstrated. Exosome-induced resistance reproduces the changes revealed in MCF-7/Rap resistant cells, including the activation of ERK/AP-1 signaling, and it remains for a long time, for at least several months, after exosome withdrawal. We have shown that both the MCF-7 subline resistant to rapamycin and cells having exosome-triggered resistance demonstrate a stable decrease in the expression of DNMT3A, the key enzyme responsible for DNA methylation. Knockdown of DNMT3A in MCF-7 cells by siRNA leads to partial cell resistance to rapamycin; thus, the DNMT3A suppression is regarded as one of the necessary elements for the development of acquired rapamycin resistance. Conclusion: We propose that DNA demethylation followed by increased expression of key genes may be one of the factors responsible for the progression and maintenance of the resistant cell phenotype that includes exosome-induced resistance.

3.
Org Biomol Chem ; 19(47): 10432-10443, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34846407

RESUMEN

An effective method for the synthesis of 8-aryl-4,5-dihydrothiazolo[4',5':3,4]benzo[1,2-c]isoxazol-2-amines was developed. This method includes the α-keto bromination of 3-aryl-6,7-dihydrobenzo[c]isoxazol-4(5H)-ones followed by the condensation of the obtained bromo derivatives with thiourea in acetonitrile. Using virtual screening, a series of acylated derivatives of the obtained compounds were selected as potential HSP90 inhibitors. These compounds were prepared and evaluated as antiproliferative agents against three cancer cell lines (A431, 22Rv1, and MCF-7). Compounds 8b, 8c and 8q exhibiting high antiproliferative potency against MCF-7 breast cancer cells with IC50 values ranging from 2.3 to 9.5 µM were chosen for in-depth evaluation. The selected compounds had remarkable effects on HSP90 client proteins, including steroid hormone receptors and the anti-apoptotic factor BCL2. The obtained compounds are of interest for anticancer drug development.


Asunto(s)
Tiazoles
4.
Chem Biodivers ; 16(9): e1900332, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31381816

RESUMEN

Brassinosteroids (BS), a class of plant-specific steroid hormones, are considered as new potential anticancer agents for the treatment of tumors of different origin, including hormone-dependent cancers. Effects of a synthetic brassinosteroid BS4 ((22R,23R,24R)-22,23-dihydroxy-24-methyl-B-homo-7-oxa-5α-cholest-2-en-6-one ((3aS,7aR,7bS,9aS,10R,12aS,12bS)-10-[(2S,3R,4R,5R)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-7a,9a-dimethyl-1,3a,4,7,7a,7b,8,9,9a,10,11,12,12a,12b-tetradecahydro-3H-benzo[c]indeno[5,4-e]oxepin-3-one)) on hormone-dependent breast cancer cells and normal epithelial cells and its impact on the estrogen receptor signaling were evaluated. Cytotoxicity was assessed by MTT-test; expression of estrogen receptor α and survivin was measured by immunoblotting. Transactivation analysis of luciferase reporter gene was performed for ERα and AP-1 factors after the brassinosteroid treatment. Dock6 and Autodock Vina were used for molecular docking. BS4 revealed a significant antiproliferative effect towards the hormone-dependent breast cancer cells and was not active against normal epithelial cells. BS4 action on MCF-7 breast cancer cells was found to be complex: a decrease in ERα expression as well as in its transcription activity was accompanied by inhibition of ERα-related signaling pathways (AP-1 complex and survivin). BS4 binding mode to ERα ligand-binding domain was analyzed by molecular docking. The obtained results show that antiproliferative and antiestrogenic properties of the brassinosteroid BS4, as well as its ability to inhibit the anti-apoptotic protein survivin may be of interest for further development of anticancer agents.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Brasinoesteroides/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Brasinoesteroides/química , Brasinoesteroides/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptor alfa de Estrógeno/metabolismo , Humanos , Células MCF-7 , Conformación Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...