Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399177

RESUMEN

Cement-based material encapsulation is a method of encapsulating electronic devices in highly thermally conductive cement-based materials to improve the heat dissipation performance of electronic components. In the field of construction, a thermoelectric generator (TEG) encapsulated with cement-based materials used in the building envelope has significant potential for waste heat energy recovery. The purpose of this study was to investigate the effect of cement-based materials integrated with aluminum heatsinks on the heat dissipation of the TEG composite structure. In this work, three types of thermoelectric work units encapsulated with cement paste were proposed. Moreover, we explored the effect of encapsulated structure, heat dissipation area, the height of thermoelectric single leg, and heat input temperature on maintaining the temperature difference between the two sides of the thermoelectric single leg with COMSOL Multiphysics. The numerical simulation results showed that under the conditions of a heat source temperature of 313.15 K and ambient temperature of 298.15 K, the temperature difference between the two sides of the internal thermoelectric single leg of Type-III can maintain a stable temperature difference of 7.77 K, which is 32.14% higher than that of Type-I and Type-II (5.88 K), and increased by 26.82% in the actual experiment. This work provides a reference for the selection and application of TEG composite structures of cement-based materials combined with aluminum heatsinks.

2.
Materials (Basel) ; 16(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37763617

RESUMEN

Building thermal insulation and energy conservation have become urgent problems in the field of civil engineering because they are important for achieving the goal of carbon neutralization. Thermal conductivity is an important index for evaluating the thermal insulation of materials. To study the influence of different porosity levels on the thermal conductivity of materials, this paper established a random distribution model using MATLAB and conducted a comparative analysis using COMSOL finite element software and classical theoretical numerical calculation formulas. The thermal conductivity of composite materials was determined based on a theoretical calculation formula and COMSOL software simulations, and the theoretical calculation results and simulation results were compared with the measured thermal conductivity of the composites. Furthermore, the influence of the width of the gaps between the materials on the heat transfer process was simulated in the fabricated roof structure. The results showed the following: (1) The thermal conductivity values calculated using the Zimmerman model were quite different from those calculated using the Campbell-Allen model and those calculated using the COMSOL software; (2) The thermal conductivity values calculated using the theoretical calculation formula were lower than the measured data, and the maximum relative error was more than 29%. The COMSOL simulation results were in good agreement with the measured data, and the relative error was less than 5%; (3) When the gap width was less than 60 mm, it increased linearly with the heat transfer coefficient. The heat transfer coefficient increased slowly when the gap width was greater than 60 mm. This was mainly due to the thermal bridge effect inside the insulation system. Based on these research results, a thermal insulation system was prepared in a factory.

3.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444819

RESUMEN

The water-cement ratio (w/c) has a significant effect on the strength of recycled concrete. In this study, considering the effects of water/cement ratio, strength, and water content of recycled aggregates, two kinds of pulse sequences of low-field nuclear magnetic resonance (LF-NMR) were applied to investigate the water migration behavior between simulated recycled aggregates (SRA) and water or fresh mortar. Three sets of concrete strength tests were designed and the results were used to verify the findings of LF-NMR imaging tests. The results showed that the depth of water migration in the SRA increases with time: at first the change rate is rapid, then slows down, and eventually tends to remain stable. When the SRA is in contact with fresh mortar with low w/c, no water migration occurs because the hydration of the cement in the mixture consumes a large amount of water, resulting in the inability of water to migrate into the SRA through capillary pressure. For the recycled aggregate concrete with high strength, the addition of extra water will increase the effective w/c and reduce the compressive strength of the concrete.

4.
Materials (Basel) ; 16(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048847

RESUMEN

Under the strategies of low-carbon and environmental protection, promoting green technology innovation to achieve carbon neutrality in the construction field has become a universal goal. As the building material with the highest consumption, concrete has gradually begun to transform into a multi-functional and intelligent product. Therefore, the research on carbon fiber-reinforced cement-based composites (CFRCs) is of relative interest. It mainly uses carbon fibers (CFs) with high elasticity, strength, and conductivity to disperse evenly into the concrete as a functional filler, to achieve the intelligent integration of concrete structures and function innovatively. Furthermore, the electrical conductivity of CFRC is not only related to the content of CFs and environmental factors but also largely depends on the uniform dispersion and the interfacial bonding strength of CFs in cement paste. This work systematically presents a review of the current research status of the enhancement and modification mechanism of CFRC and the evaluation methods of CF dispersion. Moreover, it further discusses the improvement effects of different strengthening mechanisms on the mechanical properties, durability, and smart properties (thermoelectric effect, electrothermal effect, strain-sensitive effect) of CFRC, as well as the application feasibility of CFRC in structural real-time health monitoring, thermal energy harvesting, intelligent deformation adjustment, and other fields. Furthermore, this paper summarizes the problems and challenges faced in the efficient and large-scale applications of CFRCs in civil engineering structures, and accordingly promotes some proposals for future research.

5.
Materials (Basel) ; 16(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049076

RESUMEN

Water transport is vital for the durability of ultra-high performance concrete (UHPC) in engineering, but its absorption behavior requires further comprehension. This study investigates the impact of silica fume (SF) and metakaolin (MK) on water absorption in UHPC matrix with a high volume of limestone powder (LS) under two curing temperatures, and the variation in water transport with pore size obtained by low field nuclear magnetic resonance (LF-NMR). Relations between cumulative water absorption with other properties were discussed, and the pore size distribution (PSD) measured by Mercury intrusion porosimetry (MIP) was compared with that determined by LF-NMR. Results showed that MK outperformed SF in reducing water absorption in UHPC matrix, containing 30% LS under steam curing due to the synergistic effect between MK and LS. The incorporation of LS greatly affected the water absorption process of UHPC matrix. In samples without LS, capillary and gel pores absorbed water rapidly within the first 6 h and slowly from 6 h to 48 h simultaneously. However, in samples with 30% LS, gel pore water decreased during water absorption process due to the coarsening of gel pores. MK was able to suppress gel pore deterioration caused by the addition of a large amount of LS. Compared with PSD measured by MIP, NMR performed better in detecting micropores (<10 nm).

6.
Materials (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38204002

RESUMEN

Herein, the toughening mechanism and effects of 3-(aminopropyl)triethoxysilane (3-APTES) intercalation in calcium-silicate-hydrate (CSH) structures were investigated through molecular dynamics simulations. CSH established a model using 11 Å-tobermorite to simulate the tensile properties, toughness, adsorption energy, average orientation displacement and radial distribution function of 3-APTES intercalation at different Ca/Si ratios under conditions of a CVFF force field, an NVT system, and 298 K temperature. Simulation results demonstrate that 3-APTES alters the fracture process of CSH and effectively enhances its tensile properties and toughness. The presence of 3-APTES molecules increases the energy required to destroy CSH, thereby increasing the adsorption energy of CSH crystals. Furthermore, 3-APTES molecules effectively increase the atom density within the CSH structure. As the Ca/Si ratio increases, Ca-O bond formation is enhanced, with noticeable aggregation occurring because of modification by 3-APTES within the CSH structure. This study found that 3-APTES organic compounds can effectively improve the tensile, toughness, adsorption and other properties of the CSH structure, and further improve the microstructure of CSH.

7.
Materials (Basel) ; 12(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615085

RESUMEN

Rigid polyurethane foam, foam concrete, and vacuum insulation board are common roofing insulation materials. Their weathering performance under long-term multi-field coupling determines the overall service life of the roof. The weathering properties of rigid polyurethane foam, foam concrete and vacuum insulation panels were studied under freeze thaw, humid-heat, dry-wet, high-low temperature, and multi-field coupling cycles, respectively. The heat transfer and construction process of roof panels was simulated base on upper loading and moisture transfer factors. The result indicates that the mass loss of the foam concrete and the rigid polyurethane foam in the weathering test was significant, which led to the gradual increase of thermal conductivity. Meanwhile, the thermal conductivity and mass loss of vacuum insulation panels did not change due to the lack of penetration under external pressure, therefore, it is necessary to construct composite thermal-insulation materials to alleviate the adverse effects of the service environment on a single material and realize the complementary advantages and disadvantages of the two materials. The results of the numerical simulations indicated that the roof structure must be waterproofed, and its weatherproof performance index should be the same as that of the thermal insulation material. Considering structural deformation, the overall heat transfer performance of the product was increased by around 5%.

8.
Front Microbiol ; 6: 1366, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26696978

RESUMEN

The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...