Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comp Cytogenet ; 18: 73-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798789

RESUMEN

To characterize the chromosomes of the four species of Polygonatum Miller, 1754, used in traditional Chinese medicine, P.cyrtonema Hua, 1892, P.kingianum Collett et Hemsley, 1890, P.odoratum (Miller, 1768) Druce, 1906, and P.sibiricum Redouté, 1811, and have an insight into the karyotype variation of the genus Polygonatum, fluorescence in situ hybridization (FISH) with 5S and 45S rDNA oligonucleotide probes was applied to analyze the karyotypes of 9 populations of the four species. Detailed molecular cytogenetic karyotypes of the 9 populations were established for the first time using the dataset of chromosome measurements and FISH signals of 5S and 45S rDNA. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the asymmetry of the karyotypes and karyological relationships among species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters and rDNA patterns among and within species. The basic chromosome numbers detected were x = 9, 11 and 13 for P.cyrtonema, x = 15 for P.kingianum, x = 10 and 11 for P.odoratum, and x = 12 for P.sibiricum. The original basic chromosome numbers of the four species were inferred on the basis of the data of this study and previous reports. All the 9 karyotypes were of moderate asymmetry and composed of metacentric, submetacentric and subtelocentric chromosomes or consisted of two of these types of chromosomes. Seven populations have one locus of 5S rDNA and two loci of 45S rDNA, and two populations added one 5S or 45S locus. The karyological relationships among the four species revealed by comparison of rDNA patterns and PCoA based on x, 2n, TCL, CVCI, MCA and CVCL were basically accordant with the phylogenetic relationships revealed by molecular phylogenetic studies. The mechanisms of both intra- and inter-specific dysploidy in Polygonatum were discussed based on the data of this study and literature.

2.
Comp Cytogenet ; 17(1): 31-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305810

RESUMEN

To have an insight into the karyotype variation of eight Cucurbitaceae crops including Cucumissativus Linnaeus, 1753, Cucumismelo Linnaeus, 1753, Citrulluslanatus (Thunberg, 1794) Matsumura et Nakai, 1916, Benincasahispida (Thunberg, 1784) Cogniaux, 1881, Momordicacharantia Linnaeus, 1753, Luffacylindrica (Linnaeus, 1753) Roemer, 1846, Lagenariasicerariavar.hispida (Thunberg, 1783) Hara, 1948 and Cucurbitamoschata Duchesne ex Poiret, 1819, well morphologically differentiated mitotic metaphase chromosomes were prepared using the enzymatic maceration and flame-drying method, and the chromosomal distribution of heterochromatin and 18S-5.8S-26S rRNA genes (45S rDNA) was investigated using sequential combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. Detailed karyotypes were established using the dataset of chromosome measurements, fluorochrome bands and rDNA FISH signals. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the karyological relationships among species. All the species studied had symmetrical karyotypes composed of metacentric and submetacentric or only metacentric chromosomes, but their karyotype structure can be discriminated by the scatter plot of MCA vs. CVCL. The karyological relationships among these species revealed by PCoA based on x, 2n, TCL, MCA, CVCL and CVCI was basically in agreement with the phylogenetic relationships revealed by DNA sequences. CPD staining revealed all 45S rDNA sites in all species, (peri)centromeric GC-rich heterochromatin in C.sativus, C.melo, C.lanatus, M.charantia and L.cylindrica, terminal GC-rich heterochromatin in C.sativus. DAPI counterstaining after FISH revealed pericentromeric DAPI+ heterochromatin in C.moschata. rDNA FISH detected two 45S loci in five species and five 45S loci in three species. Among these 45S loci, most were located at the terminals of chromosome arms, and a few in the proximal regions. In C.sativus, individual chromosomes can be precisely distinguished by the CPD band and 45S rDNA signal patterns, providing an easy method for chromosome identification of cucumber. The genome differentiation among these species was discussed in terms of genome size, heterochromatin, 45S rDNA site, and karyotype asymmetry based on the data of this study and previous reports.

3.
Comp Cytogenet ; 14(2): 243-264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676173

RESUMEN

To extend our knowledge on karyotype variation of the genus Vigna Savi, 1824, the chromosomal organization of rRNA genes and fluorochrome banding patterns of five wild Vigna species were studied. Sequential combined PI (propidium iodide) and DAPI (4',6-diamidino-2-phenylindole) (CPD) staining and fluorescence in situ hybridization (FISH) with 5S and 45S rDNA probes were used to analyze the karyotypes of V. luteola (Jacquin, 1771) Bentham, 1959, V. vexillata (Linnaeus, 1753) A. Richard, 1845, V. minima (Roxburgh, 1832) Ohwi & H. Ohashi, 1969, V. trilobata (Linnaeus, 1753) Verdcourt, 1968, and V. caracalla (Linnaeus, 1753) Verdcourt,1970. For further phylogenetic analysis, genomic in situ hybridization (GISH) with the genomic DNA of V. umbellata (Thunberg, 1794) Ohwi & H.Ohashi, 1969 onto the chromosomes of five wild Vigna species was also performed. Detailed karyotypes were established for the first time using chromosome measurements, fluorochrome bands, and rDNA-FISH signals. All species had chromosome number 2n = 2x = 22, and symmetrical karyotypes that composed of only metacentric or metacentric and submetacentric chromosomes. CPD staining revealed all 45S rDNA sites in the five species analyzed, (peri)centromeric GC-rich heterochromatin in V. luteola, V. trilobata and V. caracalla, interstitial GC-rich and pericentromeric AT-rich heterochromatin in V. caracalla. rDNA-FISH revealed two 5S loci in V. caracalla and one 5S locus in the other four species; one 45S locus in V. luteola and V. caracalla, two 45S loci in V. vexillata and V. trilobata, and five 45S loci in V. minima. The karyotypes of the studied species could be clearly distinguished by the karyotypic parameters, and the patterns of the fluorochrome bands and the rDNA sites, which revealed high interspecific variation among the five species. The V. umbellata genomic DNA probe produced weak signals in all proximal regions of V. luteola and all (peri)centromeric regions of V. trilobata. The combined data demonstrate that distinct genome differentiation has occurred among the five species during evolution. The phylogenetic relationships between the five wild species and related cultivated species of Vigna are discussed based on our present and previous molecular cytogenetic data.

4.
Comp Cytogenet ; 13(3): 211-230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428293

RESUMEN

Chromosomes of four Miscanthus (Andersson, 1855) species including M. sinensis (Andersson, 1855), M. floridulus (Schumann & Lauterb, 1901), M. sacchariflorus (Hackel, 1882) and M. lutarioriparius (Chen & Renvoize, 2005) were analyzed using sequentially combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. To elucidate the phylogenetic relationship among the four Miscanthus species, the homology of repetitive sequences among the four species was analyzed by comparative genomic in situ hybridization (cGISH). Subsequently four Miscanthus species were clustered based on the internal transcribed spacer (ITS) of 45S rDNA. Molecular cytogenetic karyotypes of the four Miscanthus species were established for the first time using chromosome measurements, fluorochrome bands and 45S rDNA FISH signals, which will provide a cytogenetic tool for the identification of these four species. All the four have the karyotype formula of Miscanthus species, which is 2n = 2x = 38 = 34m(2SAT) + 4sm, and one pair of 45S rDNA sites. The latter were shown as strong red bands by CPD staining. A non-rDNA CPD band emerged in M. floridulus and some blue DAPI bands appeared in M. sinensis and M. floridulus. The hybridization signals of M. floridulus genomic DNA to the chromosomes of M. sinensis and M. lutarioriparius genomic DNA to the chromosomes of M. sacchariflorus were stronger and more evenly distributed than other combinations. Molecular phylogenetic trees showed that M. sinensis and M. floridulus were closest relatives, and M. sacchariflorus and M. lutarioriparius were also closely related. These findings were consistent with the phylogenetic relationships inferred from the cGISH patterns.

5.
Comp Cytogenet ; 11(4): 579-600, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29114355

RESUMEN

The two cultivated Canavalia (Adanson, 1763) species, Canavalia gladiata (N. J. von Jacquin, 1788) A. P. de Candolle, 1825 and Canavalia ensiformis (Linnaeus, 1753) A. P. de Candolle, 1825 are closely related based on morphological and molecular phylogenetic data. However, the similarities and differences in genome organization between them have not been evaluated at molecular cytogenetic level. Here, detailed karyotypes of both species were constructed using combined PI and DAPI (CPD) staining, rDNA-FISH and self-genomic in situ hybridization (sGISH). For further comparison, comparative genomic in situ hybridization (cGISH) and sequence analysis of 5S rDNA were applied. Their chromosomes were accurately identified by sGISH and rDNA-FISH signals. Both species had the karyotype formula 2n = 22 = 18m + 4m-SAT, but the karyotype of C. ensiformis was shorter and more asymmetric than that of C. gladiata. They displayed similar CPD bands at all 45S rDNA sites and centromeres. C. gladiata had ten centromeric 5S rDNA loci and two SC (secondary constriction)-associated 45S rDNA loci. C. ensiformis had nine centromeric and one interstitial 5S loci, two SC-associated and one proximal 45S loci. Their sGISH signal patterns displayed both basic similarities and distinct differences. Reciprocal cGISH generated prominent signals in all pericentromeric regions and 45S sites. There was lower level of sequence identity of the non-transcribed spacer between their 5S rDNA repeats. These data confirmed the evolutionary closeness between C. gladiata and C. ensiformis and demonstrated obvious differentiation between their genomes, and supported the opinion that C. ensiformis is more advanced in evolution than C. gladiata.

6.
Zhong Yao Cai ; 37(4): 604-7, 2014 Apr.
Artículo en Chino | MEDLINE | ID: mdl-25345133

RESUMEN

OBJECTIVE: To study the chemical constituents of Indocalamus latifolius leaves. METHODS: The chemical constituents were isolated and purified with silica column chromatography and gel chromatography. Their structures were identified by physicochemical properties and various spectroscopic methods including NMR spectrum, MS, UV, etc. RESULTS: Fourteen compounds were isolated from the ethyl acetate part as isovitexin (1), vitexin (2), orientin (3), homoorientin (4), vanillic acid (5), chlorogenic acid (6), caffeic acid (7), ferulic acid (8), friedelin (9), tricin (10), tricin-7-O-beta-D-glucopyranoside (11), fernenol (12), luteolin-6-C-glucopyranoside (13) and quercetin-3-O-glucopyranoside (14). CONCLUSION: All compounds are isolated from this plant for the first time.


Asunto(s)
Extractos Vegetales/química , Hojas de la Planta/química , Sasa/química , Apigenina/química , Apigenina/aislamiento & purificación , Ácido Clorogénico/química , Ácido Clorogénico/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/aislamiento & purificación
7.
Yi Chuan ; 32(3): 264-70, 2010 Mar.
Artículo en Chino | MEDLINE | ID: mdl-20233704

RESUMEN

In order to analyze the conservation of maize centromeric satellite DNA (CentC) and centromeric retrotransposon (CRM) in the subspecies and relatives of Zea mays, dual fluorescence in situ hybridization (FISH) was used to detect the existence and distribution of the above two repetitive sequences in Zea mays ssp. mexicana, Z. diploperennis, Z. perennis, Tripsacum dactyloides, Coix lacryma-jobi, and Sorghum bicolor. In Z. mays ssp. mexicana, Z. diploperennis, and Z. perennis, both CentC and CRM probes produced strong or relatively strong signals in the centromeric regions of all chromosomes. There was an obvious variation in the intensity of hybridization signals on different chromosomes, indicating that different centromeres have different amounts of CentC and CRM sequences. In some centromeres, the intensity of CentC signals differed from that of CRM signals and was free from overlapping. In T. dactyloides, only weak CentC and CRM signals were detected in the centromeric regions of most chromosomes, while in C. lacryma-jobi and S. bicolor only relatively strong or strong CRM signals primarily located in the centromeric regions were detected. This result indicates that CentC is highly conserved among the subspecies of Z. mays and the species of Zea, and has high conservation in Tripsacum, a genus that is most closely related to Zea, and CRM is conserved among the species of grass family either closely or distantly related to Zea.


Asunto(s)
Centrómero/genética , Hibridación Fluorescente in Situ/métodos , Zea mays/genética , ADN Satélite/genética , Retroelementos/genética
8.
Zhong Yao Cai ; 33(10): 1542-5, 2010 Oct.
Artículo en Chino | MEDLINE | ID: mdl-21355188

RESUMEN

OBJECTIVE: Using ITS sequence of nine species to identify counterfeiting medicine and analyse phylogenetic of Asparagus. METHODS: Analysing ITS sequences by amplification, cloning,sequencing and alignment. RESULTS: The length range of ITS sequence of nine species was from 711 to 748 bp, the percentage of G + C content was about 60%. The phylogenetic tree constructed on the basis of the ITS sequences showed that nine species were divided into two branches: Asparagus cochinchinensis, Asparagus officinalis, Asparagus densiflorus, Asparagus densiflorus cv. Myers and Asparagus densiflorus cv. Sprengeri were a branch and the others were a branch. Asparagus densiflorus and Asparagus densflorus cv. Myers those were from Africa had priority to clustering and then clustering with Asparagus densiflorus cv. Sprengeri that was a variant of Asparagus densiflorus in the first branch. Asparagus setaceus had relatively distant genetic relationship with the others three materials in another branch. CONCLUSIONS: The ITS sequences could distinguish species of Asparagus to test the counterfeit. Division status in phylogenetic tree of some species were debatable and ITS sequence was combined with others analytical tools to analyze the realistic phylogeny.


Asunto(s)
Asparagus/genética , ADN Espaciador Ribosómico/genética , Filogenia , Plantas Medicinales/genética , Asparagus/clasificación , Secuencia de Bases , Cartilla de ADN , ADN de Plantas/química , ADN de Plantas/genética , ADN Espaciador Ribosómico/química , Datos de Secuencia Molecular , Plantas Medicinales/clasificación , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
Yi Chuan ; 28(12): 1597-606, 2006 Dec.
Artículo en Chino | MEDLINE | ID: mdl-17138549

RESUMEN

Centromeres are the chromosomal domains necessary for faithful chromosome segregation and transmission during mitosis and meiosis in eukaryotes. In the last decade, centromeres in some plant species including Arabidopsis, rice and maize have been deeply studied at molecular level. Centromeric DNAs evolve rapidly and are little conserved among various plants, but the types of centromeric DNA sequences and their organization patterns within centromeres are basically similar in plants. Plant centromeres are usually composed of clusters of tandemly arrayed satellite repeats that are interspersed with centromere-specific retrotransposons. In contrast to centromeric DNA, structural and transient centromeric/kinetochoric proteins are conserved among eukaryotes including plants. As the cases in other eukaryotes, the presence of CENH3 (centromeric histone H3)-containing nucleosomes is the fundamental feature of plant functional centromeres, and CENH3 plays critical roles in the identity and maintenance of plant centromeric chromatin.


Asunto(s)
Centrómero/química , Centrómero/metabolismo , Células Vegetales , Plantas/genética , Animales , Centrómero/genética , Evolución Molecular , Humanos , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
10.
Yi Chuan Xue Bao ; 32(10): 1101-7, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16252707

RESUMEN

In this study, we performed sequentially combined PI and DAPI (CPD) staining and FISH with two different 45S rDNA clones on meiotic pachytene and mitotic metaphase chromosomes in tomato. Ten red CPD bands were shown on eight pachytene bivalents, and 12 bands were shown on six pairs of mitotic metaphase chromosomes. The CPD bands exhibited on mitotic metaphase chromosomes corresponded to the prominent bands exhibited on the pachytene chromosomes. The distinctive CPD bands, which could be constantly and clearly detected using the CPD staining procedure we improved, provided new landmarks for chromosome identification in tomato. FISH with the tomato 45S rDNA clone revealed very strong signal(s) in the satellite(s) on the short arm of chromosome 2 as well as weak signals in five CPD banded regions at pachytene or four pairs of CPD banded regions at metaphase chromosomes. However, FISH with pTa71 plasmid only revealed signals in the satellite. Considering the difference in sequence between the two rDNA clones, we inferred that only the satellite contains the coding regions of 45S rDNA unit in tomato. The property of CPD bands as well as the DNA sequences probably involved in the five CPD banded regions was discussed.


Asunto(s)
Bandeo Cromosómico/métodos , ADN Ribosómico/genética , ARN Ribosómico/genética , Solanum lycopersicum/genética , Hibridación Fluorescente in Situ/métodos , Solanum lycopersicum/citología , Metafase , Fase Paquiteno , ARN de Planta/genética
11.
Chromosoma ; 113(1): 16-21, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15197560

RESUMEN

In this study, a new chromosome fluorescence banding technique was developed in plants. The technique combined 4',6-diamidino-2-phenylindole (DAPI) staining with software analysis including three-dimensional imaging after deconvolution. Clear multiple and adjacent DAPI bands like G-bands were obtained by this technique in the tested species including Hordeum vulgare L., Oryza officinalis, Wall & Watt, Triticum aestivum L., Lilium brownii, Brown, and Vicia faba L. During mitotic metaphase, the numbers of bands for the haploid genomes of these species were about 185, 141, 309, 456 and 194, respectively. Reproducibility analysis demonstrated that banding patterns within a species were stable at the same mitotic stage and they could be used for identifying specific chromosomes and chromosome regions. The band number fluctuated: the earlier the mitotic stage, the greater the number of bands. The technique enables genes to be mapped onto specific band regions of the chromosomes by only one fluorescence in situ hybridisation (FISH) step with no chemical banding treatments. In this study, the 45S and 5S rDNAs of some tested species were located on specific band regions of specific chromosomes and they were all positioned at the interbands with the new technique. Because no chemical banding treatment was used, the banding patterns displayed by the technique should reflect the natural conformational features of chromatin. Thus it could be expected that this technique should be suitable for all eukaryotes and would have widespread utility in chromosomal structure analysis and physical mapping of genes.


Asunto(s)
Bandeo Cromosómico/métodos , Hibridación Fluorescente in Situ , Indoles , Plantas/genética , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...