Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19144, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160216

RESUMEN

Peripheral Capillary Oxygen Saturation (SpO2) has received increasing attention during the COVID-19 pandemic. Clinical investigations have demonstrated that individuals afflicted with COVID-19 exhibit notably reduced levels of SpO2 before the deterioration of their health status. To cost-effectively enable individuals to monitor their SpO2, this paper proposes a novel neural network model named "ITSCAN" based on Temporal Shift Module. Benefiting from the widespread use of smartphones, this model can assess an individual's SpO2 in real time, utilizing standard facial video footage, with a temporal granularity of seconds. The model is interweaved by two distinct branches: the motion branch, responsible for extracting spatiotemporal data features and the appearance branch, focusing on the correlation between feature channels and the location information of feature map using coordinate attention mechanisms. Accordingly, the SpO2 estimator generates the corresponding SpO2 value. This paper summarizes for the first time 5 loss functions commonly used in the SpO2 estimation model. Subsequently, a novel loss function has been contributed through the examination of various combinations and careful selection of hyperparameters. Comprehensive ablation experiments analyze the independent impact of each module on the overall model performance. Finally, the experimental results based on the public dataset (VIPL-HR) show that our model has obvious advantages in MAE (1.10%) and RMSE (1.19%) compared with related work, which implies more accuracy of the proposed method to contribute to public health.


Asunto(s)
COVID-19 , Saturación de Oxígeno , Fotopletismografía , Humanos , Fotopletismografía/métodos , COVID-19/sangre , COVID-19/diagnóstico , Redes Neurales de la Computación , Oximetría/métodos , Oxígeno/sangre , SARS-CoV-2/aislamiento & purificación , Monitoreo Fisiológico/métodos , Teléfono Inteligente
2.
Physiol Meas ; 45(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38604181

RESUMEN

Objective. Monitoring changes in human heart rate variability (HRV) holds significant importance for protecting life and health. Studies have shown that Imaging Photoplethysmography (IPPG) based on ordinary color cameras can detect the color change of the skin pixel caused by cardiopulmonary system. Most researchers employed deep learning IPPG algorithms to extract the blood volume pulse (BVP) signal, analyzing it predominantly through the heart rate (HR). However, this approach often overlooks the inherent intricate time-frequency domain characteristics in the BVP signal, which cannot be comprehensively deduced solely from HR. The analysis of HRV metrics through the BVP signal is imperative. APPROACH: In this paper, the transformation invariant loss function with distance equilibrium (TIDLE) loss function is applied to IPPG for the first time, and the details of BVP signal can be recovered better. In detail, TIDLE is tested in four commonly used IPPG deep learning models, which are DeepPhys, EfficientPhys, Physnet and TS_CAN, and compared with other three loss functions, which are mean absolute error (MAE), mean square error (MSE), Neg Pearson Coefficient correlation (NPCC). MAIN RESULTS: The experiments demonstrate that MAE and MSE exhibit suboptimal performance in predicting LF/HF across the four models, achieving the Statistic of Mean Absolute Error (MAES) of 25.94% and 34.05%, respectively. In contrast, NPCC and TIDLE yielded more favorable results at 13.51% and 11.35%, respectively. Taking into consideration the morphological characteristics of the BVP signal, on the two optimal models for predicting HRV metrics, namely DeepPhys and TS_CAN, the Pearson coefficients for the BVP signals predicted by TIDLE in comparison to the gold-standard BVP signals achieved values of 0.627 and 0.605, respectively. In contrast, the results based on NPCC were notably lower, at only 0.545 and 0.533, respectively. SIGNIFICANCE: This paper contributes significantly to the effective restoration of the morphology and frequency domain characteristics of the BVP signal.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Fotopletismografía/métodos , Humanos , Aprendizaje Profundo , Frecuencia Cardíaca/fisiología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...