Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
J Phys Chem B ; 128(1): 1-2, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38204406
4.
J Phys Chem A ; 128(1): 1-2, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38204409
5.
Adv Sci (Weinh) ; 11(7): e2305978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063842

RESUMEN

Numerous biological systems contain vesicle-like biomolecular compartments without membranes, which contribute to diverse functions including gene regulation, stress response, signaling, and skin barrier formation. Coacervation, as a form of liquid-liquid phase separation (LLPS), is recognized as a representative precursor to the formation and assembly of membrane-less vesicle-like structures, although their formation mechanism remains unclear. In this study, a coacervation-driven membrane-less vesicle-like structure is constructed using two proteins, GG1234 (an anionic intrinsically disordered protein) and bhBMP-2 (a bioengineered human bone morphogenetic protein 2). GG1234 formed both simple coacervates by itself and complex coacervates with the relatively cationic bhBMP-2 under acidic conditions. Upon addition of dissolved bhBMP-2 to the simple coacervates of GG1234, a phase transition from spherical simple coacervates to vesicular condensates occurred via the interactions between GG1234 and bhBMP-2 on the surface of the highly viscoelastic GG1234 simple coacervates. Furthermore, the shell structure in the outer region of the GG1234/bhBMP-2 vesicular condensates exhibited gel-like properties, leading to the formation of multiphasic vesicle-like compartments. A potential mechanism is proposed for the formation of the membrane-less GG1234/bhBMP-2 vesicle-like compartments. This study provides a dynamic process underlying the formation of biomolecular multiphasic condensates, thereby enhancing the understanding of these biomolecular structures.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Orgánulos , Humanos , Proteínas Intrínsecamente Desordenadas/química , Regulación de la Expresión Génica
6.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38077065

RESUMEN

Tau forms toxic fibrillar aggregates in a family of neurodegenerative diseases known as tauopathies. The faithful replication of tauopathy-specific fibril structures is a critical gap for developing diagnostic and therapeutic tools. This study debuts a strategy of identifying a critical segment of tau that forms a folding motif that is characteristic of a family of tauopathies and isolating it as a standalone peptide that form seeding-competent fibrils. The 19-residue jR2R3 peptide (295-313) spanning the R2/R3 splice junction of tau, in the presence of P301L, forms seeding-competent amyloid fibrils. This tau fragment contains the hydrophobic VQIVYK hexapeptide that is part of the core of every pathological tau fibril structure solved to-date and an intramolecular counter-strand that stabilizes the strand-loop-strand (SLS) motif observed in 4R tauopathy fibrils. This study shows that P301L exhibits a duality of effects: it lowers the barrier for the peptide to adopt aggregation-prone conformations and enhances the local structuring of water around the mutation site that facilitates site-specific dewetting and in-register stacking of tau to form cross ß-sheets. We solve a 3 Å cryo-EM structure of jR2R3-P301L fibrils with a pseudo 2 1 screw symmetry in which each half of the fibril's cross-section contains two jR2R3-P301L peptides. One chain adopts a SLS fold found in 4R tauopathies that is stabilized by a second chain wrapping around the SLS fold, reminiscent of the 3-fold and 4-fold structures observed in 4R tauopathies. These jR2R3-P301L fibrils are able to template full length tau in a prion-like fashion. Significance Statement: This study presents a first step towards designing a tauopathy specific aggregation pathway by engineering a minimal tau prion building block, jR2R3, that can template and propagate distinct disease folds. We present the discovery that P301L-among the widest used mutations in cell and animal models of Alzheimer's Disease-destabilizes an aggregation-prohibiting internal hairpin and enhances the local surface water structure that serves as an entropic hotspot to exert a hyper-localized effect in jR2R3. Our study suggests that P301L may be a more suitable mutation to include in modeling 4R tauopathies than for modelling Alzheimer's Disease, and that mutations are powerful tools for the purpose of designing of tau prion models as therapeutic tools.

9.
RNA ; 29(11): 1644-1657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580126

RESUMEN

The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small fraction of sequence space can be analyzed even with high-throughput techniques. Methods to extrapolate from a limited data set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for designing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, identifying potentially active triple and quadruple mutants beyond the experimental data set of single and double mutants. The predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activity. This set of sequences included mutants that form a previously unknown evolutionary "bridge" between two ribozyme families that share a common motif. Individual steps in the method could be examined, understood, and guided by a human, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation.


Asunto(s)
ARN Catalítico , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , Epistasis Genética , Mutación , Evolución Biológica , Aptitud Genética
10.
J Am Chem Soc ; 145(30): 16678-16690, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466340

RESUMEN

We present a new thermodynamic model to investigate the relative effects of excluded volume and soft interaction contributions in determining whether a cosolute will either destabilize or stabilize a protein in solution. This model is unique in considering an atomistically detailed model of the protein and accounting for the preferential accumulation/exclusion of the osmolyte molecules from the protein surface. Importantly, we use molecular dynamics simulations and experiments to validate the model. The experimental approach presents a unique means of decoupling excluded volume and soft interaction contributions using a linear polymeric series of cosolutes with different numbers of glucose subunits, from 1 (glucose) to 8 (maltooctaose), as well as an 8-mer of glucose units in the closed form (γ-CD). By studying the stabilizing effect of cosolutes along this polymeric series using lysozyme as a model protein, we validate the thermodynamic model and show that sugars stabilize proteins according to an excluded volume mechanism.


Asunto(s)
Proteínas , Azúcares , Polímeros , Glucosa , Termodinámica
11.
Biomacromolecules ; 24(8): 3580-3588, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37486022

RESUMEN

Biomolecular assembly processes involving competition between specific intermolecular interactions and thermodynamic phase instability have been implicated in a number of pathological states and technological applications of biomaterials. As a model for such processes, aqueous mixtures of oppositely charged homochiral polypeptides such as poly-l-lysine and poly-l-glutamic acid have been reported to form either ß-sheet-rich solid-like precipitates or liquid-like coacervate droplets depending on competing hydrogen bonding interactions. Herein, we report studies of polypeptide mixtures that reveal unexpectedly diverse morphologies ranging from partially coalescing and aggregated droplets to bulk precipitates, as well as a previously unreported re-entrant liquid-liquid phase separation at high polypeptide concentration and ionic strength. Combining our experimental results with all-atom molecular dynamics simulations of folded polypeptide complexes reveals a concentration dependence of ß-sheet-rich secondary structure, whose relative composition correlates with the observed macroscale morphologies of the mixtures. These results elucidate a crucial balance of interactions that are important for controlling morphology during coacervation in these and potentially similar biologically relevant systems.


Asunto(s)
Péptidos , Conformación Proteica en Lámina beta , Péptidos/química , Estructura Secundaria de Proteína , Enlace de Hidrógeno , Concentración Osmolar
12.
Biomacromolecules ; 24(7): 3032-3042, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294315

RESUMEN

Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial. The only detectable component of the load-bearing fibers in octopus threads is a 135 kDa protein, octovafibrin, comprising 29 tandem repeats of epidermal growth factor (EGF) each of which contains 3 intramolecular disulfide linkages. The N- and C-terminal C-type lectins mediate linear end-to-end octovafibrin self-assembly. Mechanical testing of threads shows that the regularly spaced disulfide linkages result in improved stiffness, toughness, and energy dissipation. In response to applied loads, molecular dynamics and X-ray scattering show that EGF-like domains deform by recruiting two hidden length ß-sheet structures nested between the disulfides. The results of this study further the understanding of intramolecular crosslinking in polymers and provide a foundation for the mechanical contributions of EGF domains to the extracellular matrix.


Asunto(s)
Factor de Crecimiento Epidérmico , Octopodiformes , Animales , Factor de Crecimiento Epidérmico/química , Secuencia de Aminoácidos , Matriz Extracelular/metabolismo , Disulfuros/química
13.
J Phys Chem B ; 127(18): 4022-4031, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37129599

RESUMEN

The intrinsically disordered protein Tau represents the main component of neurofibrillary tangles that are a hallmark of Alzheimer's disease. A small fragment of Tau, known as paired helical filament 6 (PHF6), is considered to be important for the formation of the ß-structure core of the fibrils. Here we study the aggregation of this fragment in the presence of different cosolutes, including urea, TMAO, sucrose and 2-hydroxypropyl-ß-cyclodextrin (2-HPßCD), using both experiments and molecular dynamics simulations. A novel implicit solvation approach (MIST - Model with Implicit Solvation Thermodynamics) is used, where an energetic contribution based on the concept of transfer free energies describes the effect of the cosolutes. The simulation predictions are compared to thioflavin-T and atomic force microscopy results, and the good agreement observed confirms the predictive ability of the computational approach herein proposed. Both simulations and experiments indicate that PHF6 aggregation is inhibited in the presence of urea and 2-HPßCD, while TMAO and sucrose stabilize associated conformations. The remarkable ability of HPßCD to inhibit aggregation represents an extremely promising result for future applications, especially considering the widespread use of this molecule as a drug carrier to the brain and as a solubilizer/excipient in pharmaceutical formulations.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/química , 2-Hidroxipropil-beta-Ciclodextrina , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Simulación de Dinámica Molecular , Urea
18.
Methods Mol Biol ; 2563: 37-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227467

RESUMEN

Liquid-liquid phase separation (LLPS) is a process that results in the formation of a polymer-rich liquid phase coexisting with a polymer-depleted liquid phase. LLPS plays a critical role in the cell through the formation of membrane-less organelles, but it also has a number of biotechnical and biomedical applications such as drug confinement and its targeted delivery. In this chapter, we present a computational efficient methodology that uses field-theoretic simulations (FTS) with complex Langevin (CL) sampling to characterize polymer phase behavior and delineate the LLPS phase boundaries. This approach is a powerful complement to analytical and explicit-particle simulations, and it can serve to inform experimental LLPS studies. The strength of the method lies in its ability to properly sample a large ensemble of polymers in a saturated solution while including the effect of composition fluctuations on LLPS. We describe the approaches that can be used to accurately construct phase diagrams of a variety of molecularly designed polymers and illustrate the method by generating an approximation-free phase diagram for a classical symmetric diblock polyampholyte.


Asunto(s)
Orgánulos , Polímeros , Fenómenos Químicos , Simulación por Computador
19.
Nat Commun ; 13(1): 7326, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443315

RESUMEN

Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.


Asunto(s)
Arginina , Proteínas Intrínsecamente Desordenadas , Lisina , Aminoácidos , Cloruro de Sodio , Interacciones Hidrofóbicas e Hidrofílicas
20.
J Phys Chem Lett ; 13(34): 7980-7986, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984361

RESUMEN

Using a combination of molecular dynamics simulation, dialysis experiments, and electronic circular dichroism measurements, we studied the solvation thermodynamics of proteins in two osmolyte solutions, trimethylamine N-oxide (TMAO) and betaine. We showed that existing force fields are unable to capture the solvation properties of the proteins lysozyme and ribonuclease T1 and that the inaccurate parametrization of protein-osmolyte interactions in these force fields promoted an unphysical strong thermal denaturation of the trpcage protein. We developed a novel force field for betaine (the KBB force field) which reproduces the experimental solution Kirkwood-Buff integrals and density. We further introduced appropriate scaling to protein-osmolyte interactions in both the betaine and TMAO force fields which led to successful reproduction of experimental protein-osmolyte preferential binding coefficients for lysozyme and ribonuclease T1 and prevention of the unphysical denaturation of trpcage in osmolyte solutions. Correct parametrization of protein-TMAO interactions also led to the stabilization of the collapsed conformations of a disordered elastin-like peptide, while the uncorrected parameters destabilized the collapsed structures. Our results establish that the thermodynamic stability of proteins in both betaine and TMAO solutions is governed by osmolyte exclusion from proteins.


Asunto(s)
Betaína , Muramidasa , Metilaminas/química , Muramidasa/metabolismo , Estabilidad Proteica , Ribonucleasa T1/metabolismo , Soluciones , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...