Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Arrhythm Electrophysiol ; 15(3): e010572, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35225649

RESUMEN

BACKGROUND: CaM (calmodulin), encoded by 3 separate genes (CALM1, CALM2, and CALM3), is a multifunctional Ca2+-binding protein involved in many signal transduction events including ion channel regulation. CaM variants may present with early-onset long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia, or sudden cardiac death. Most reported variants occurred de novo. We identified a novel CALM3 variant, p.Asn138Lys (N138K), in a 4-generation family segregating with LQTS. The aim of this study was to elucidate its pathogenicity and to compare it with that of p.D130G-CaM-a variant associated with a severe LQTS phenotype. METHODS: We performed whole exome sequencing for a large, 4-generation family affected by LQTS. To assess the effect of the detected CALM3 variant, the intrinsic Ca2+-binding affinity was measured by stoichiometric Ca2+ titrations and equilibrium titrations. L-type Ca2+ and slow delayed rectifier potassium currents (ICaL and IKs) were recorded by whole-cell patch-clamp. Cav1.2 and Kv7.1 membrane expression were determined by optical fluorescence assays. RESULTS: We identified 14 p.N138K-CaM carriers in a family where 2 sudden deaths occurred in children. Several members were only mildly affected compared with CaM-LQTS patients to date described in literature. The intrinsic Ca2+-binding affinity of the CaM C-terminal domain was 10-fold lower for p.N138K-CaM compared with wild-type-CaM. ICaL inactivation was slowed in cells expressing p.N138K-CaM but less than in p.D130G-CaM cells. Unexpectedly, a larger IKs current density was observed in cells expressing p.N138K-CaM, but not for p.D130G-CaM, compared with wild-type-CaM. CONCLUSIONS: The p.N138K CALM3 variant impairs Ca2+-binding affinity of CaM and ICaL inactivation but potentiates IKs. The variably expressed phenotype of this variant compared with previously published de novo LQTS-CaM variants is likely explained by a milder impairment of ICaL inactivation combined with IKs augmentation.


Asunto(s)
Calmodulina/genética , Síndrome de QT Prolongado , Taquicardia Ventricular , Calmodulina/metabolismo , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación , Miocitos Cardíacos/metabolismo , Fenotipo , Taquicardia Ventricular/etiología
2.
Structure ; 29(12): 1339-1356.e7, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33770503

RESUMEN

Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Unión Proteica
3.
J Biol Chem ; 296: 100458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639159

RESUMEN

Voltage-gated sodium channels (Navs) are tightly regulated by multiple conserved auxiliary proteins, including the four fibroblast growth factor homologous factors (FGFs), which bind the Nav EF-hand like domain (EFL), and calmodulin (CaM), a multifunctional messenger protein that binds the NaV IQ motif. The EFL domain and IQ motif are contiguous regions of NaV cytosolic C-terminal domains (CTD), placing CaM and FGF in close proximity. However, whether the FGFs and CaM act independently, directly associate, or operate through allosteric interactions to regulate channel function is unknown. Titrations monitored by steady-state fluorescence spectroscopy, structural studies with solution NMR, and computational modeling demonstrated for the first time that both domains of (Ca2+)4-CaM (but not apo CaM) directly bind two sites in the N-terminal domain (NTD) of A-type FGF splice variants (FGF11A, FGF12A, FGF13A, and FGF14A) with high affinity. The weaker of the (Ca2+)4-CaM-binding sites was known via electrophysiology to have a role in long-term inactivation of the channel but not known to bind CaM. FGF12A binding to a complex of CaM associated with a fragment of the NaV1.2 CTD increased the Ca2+-binding affinity of both CaM domains, consistent with (Ca2+)4-CaM interacting preferentially with its higher-affinity site in the FGF12A NTD. Thus, A-type FGFs can compete with NaV IQ motifs for (Ca2+)4-CaM. During spikes in the cytosolic Ca2+ concentration that accompany an action potential, CaM may translocate from the NaV IQ motif to the FGF NTD, or the A-type FGF NTD may recruit a second molecule of CaM to the channel.


Asunto(s)
Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Calcio/metabolismo , Calmodulina/fisiología , Motivos EF Hand/genética , Factores de Crecimiento de Fibroblastos/genética , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Canales de Sodio Activados por Voltaje/metabolismo
4.
J Clin Invest ; 130(9): 4663-4678, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749237

RESUMEN

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mutación Missense , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Taquicardia Ventricular/enzimología , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Oxigenasas de Función Mixta/genética , Miocardio/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Taquicardia Ventricular/genética , Taquicardia Ventricular/patología
5.
Biomol NMR Assign ; 12(2): 283-289, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29728980

RESUMEN

Human voltage-gated sodium (NaV) channels are critical for initiating and propagating action potentials in excitable cells. Nine isoforms have different roles but similar topologies, with a pore-forming α-subunit and auxiliary transmembrane ß-subunits. NaV pathologies lead to debilitating conditions including epilepsy, chronic pain, cardiac arrhythmias, and skeletal muscle paralysis. The ubiquitous calcium sensor calmodulin (CaM) binds to an IQ motif in the C-terminal tail of the α-subunit of all NaV isoforms, and contributes to calcium-dependent pore-gating in some channels. Previous structural studies of calcium-free (apo) CaM bound to the IQ motifs of NaV1.2, NaV1.5, and NaV1.6 showed that CaM binding was mediated by the C-domain of CaM (CaMC), while the N-domain (CaMN) made no detectable contacts. To determine whether this domain-specific recognition mechanism is conserved in other NaV isoforms, we used solution NMR spectroscopy to assign the backbone resonances of complexes of apo CaM bound to peptides of IQ motifs of NaV1.1, NaV1.4, and NaV1.7. Analysis of chemical shift differences showed that peptide binding only perturbed resonances in CaMC; resonances of CaMN were identical to free CaM. Thus, CaMC residues contribute to the interface with the IQ motif, while CaMN is available to interact elsewhere on the channel.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Canales de Sodio Activados por Voltaje/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canales de Sodio Activados por Voltaje/química
6.
Dev Biol ; 434(1): 63-73, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180104

RESUMEN

Wnt proteins regulate diverse biological responses by initiating two general outcomes: ß-catenin-dependent transcription and ß-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the ß-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in ß-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/ß-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in ß-catenin signaling.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas Portadoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Biomol NMR Assign ; 11(2): 297-303, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28823028

RESUMEN

Human voltage-gated sodium channel NaV1.2 has a single pore-forming α-subunit and two transmembrane ß-subunits. Expressed primarily in the brain, NaV1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13C,15N- CaM (CaMC) bound to an unlabeled peptide with the sequence of rat NaV1.2 IQ motif showed that apo CaMC (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaMC. However, we could not monitor the NaV1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaMN)) was determined. To distinguish contributions of CaMN and CaMC, we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13C,15N-labeled peptide with the sequence of human NaV1.2 IQ motif (NaV1.2IQp) bound to apo 13C,15N-CaM or apo 13C,15N-CaMC. Comparing the assignments of apo CaM in complex with NaV1.2IQp to those of free apo CaM showed that residues within CaMC were significantly perturbed, while residues within CaMN were essentially unchanged. The chemical shifts of residues in NaV1.2IQp and in the C-domain of CaM were nearly identical regardless of whether CaMN was covalently linked to CaMC. This suggests that CaMN does not influence apo CaM binding to NaV1.2IQp.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencias de Aminoácidos , Humanos , Unión Proteica , Dominios Proteicos
8.
Biomol NMR Assign ; 11(2): 275-280, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815458

RESUMEN

Calcineurin (CaN) is a heterodimeric and highly conserved serine/threonine phosphatase (PP2B) that plays a critical role in coupling calcium signals to physiological processes including embryonic cardiac development, NF-AT-regulated gene expression in immune responses, and apoptosis. The catalytic subunit (CaNA) has three isoforms (α, ß, and γ,) in humans and seven isoforms in Paramecium. In all eukaryotes, the EF-hand protein calmodulin (CaM) regulates CaN activity in a calcium-dependent manner. The N- and C-domains of CaM (CaMN and CaMC) recognize a CaM-binding domain (CaMBD) within an intrinsically disordered region of CaNA that precedes the auto-inhibitory domain (AID) of CaNA. Here we present nearly complete 1H, 13C, and 15N resonance assignments of (Ca2+)4-CaM bound to a peptide containing the CaMBD sequence in the beta isoform of CaNA (ßCaNA-CaMBDp). Its secondary structure elements predicted from the assigned chemical shifts were in good agreement with those observed in the high-resolution structures of (Ca2+)4-CaM bound to CaMBDs of multiple enzymes. Based on the reported literature, the CaMBD of the α isoform of CaNA can bind to CaM in two opposing orientations which may influence the regulatory function of CaM. Because a high resolution structure of (Ca2+)4-CaM bound to ßCaNA-CaMBDp has not been reported, our studies serve as a starting point for determining the solution structure of this complex. This will demonstrate the preferred orientation of (Ca2+)4-CaM on the CaMBD as well as the orientations of CaMN and CaMC relative to each other and to the AID of ßCaNA.


Asunto(s)
Calcineurina/química , Calcio/metabolismo , Calmodulina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Unión Proteica
9.
Biophys Chem ; 224: 1-19, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28343066

RESUMEN

Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.


Asunto(s)
Secuencias de Aminoácidos , Calcio/farmacología , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/química , Animales , Sitios de Unión , Calcio/metabolismo , Proteínas del Tejido Nervioso/química , Resonancia Magnética Nuclear Biomolecular , Ratas
10.
Proteins ; 83(5): 989-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25694384

RESUMEN

The anti-psychotic drug trifluoperazine (TFP) is an antagonist observed to bind to calcium-saturated calmodulin ((Ca(2+) )4 -CaM) at ratios of 1:1 (1CTR), 2:1 (1A29), and 4:1 (1LIN). Each structure contains one TFP bound in the hydrophobic cleft of the C-domain of CaM. However, the orientation of the trifluoromethyl (CF3 ) moiety differs among them: it is buried in the C-domain cleft of 1A29 and 1LIN, but protrudes from 1CTR. We report a 2.0 Å resolution crystallographic structure (4RJD) of TFP bound to the (Ca(2+) )-saturated C-domain of CaM (CaMC ). The asymmetric unit contains two molecules of (Ca(2+) )2 -CaMC . Chain backbones were nearly identical, but the orientation of TFP in the cleft of Chain A matched 1A29/1LIN, while TFP bound to Chain B matched 1CTR. This was accommodated by a flip of the M144 sidechain and small changes in sidechains of M109 and M145. Docking simulations suggested that the rotamer conformation of M144 determined the orientation of TFP within the cleft of (Ca(2+) )2 -CaMC . Chains A and B show that the open cleft of (Ca(2+) )2 -CaMC is promiscuous in accepting TFP in reversed directions under the same crystallization conditions. Observing multiple orientations of an antagonist bound to a single protein highlights the challenge of designing highly specific pharmaceuticals, and may have importance for QSAR of other CF3 -containing drugs such as fluoxetine (anti-depressant) or efavirenz (reverse transcriptase inhibitor). This study emphasizes that a single structure of a complex represents an energetically accessible state, but does not necessarily show the full range of energetically equivalent states.


Asunto(s)
Antipsicóticos/química , Calmodulina/química , Trifluoperazina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Metionina/química , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
11.
Biophys Chem ; 193-194: 35-49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25145833

RESUMEN

Calmodulin (CaM) allosterically regulates the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1): apo CaM activates the channel, while (Ca(2+))4-CaM inhibits it. CaM-binding RyR1 residues 1975-1999 and 3614-3643 were proposed to allow CaM to bridge adjacent RyR1 subunits. Fluorescence anisotropy titrations monitored the binding of CaM and its domains to peptides encompassing hRyR(11975-1999) or hRyR1(3614-3643). Both CaM and its C-domain associated in a calcium-independent manner with hRyR1(3614-3643) while N-domain required calcium and bound ~250-fold more weakly. Association with hRyR1(11975-1999) was weak. Both hRyR1 peptides increased the calcium-binding affinity of both CaM domains, while maintaining differences between them. These energetics support the CaM C-domain association with hRyR1(3614-3643) at low calcium, positioning CaM to respond to calcium efflux. However, the CaM N-domain affinity for hRyR(11975-1999) alone was insufficient to support CaM bridging adjacent RyR1 subunits. Other proteins or elements of the hRyR1 structure must contribute to the energetics of CaM-mediated regulation.


Asunto(s)
Apoproteínas/química , Calcio/química , Calmodulina/química , Canal Liberador de Calcio Receptor de Rianodina/química , Secuencia de Aminoácidos , Apoproteínas/genética , Calmodulina/genética , Fluoresceínas , Colorantes Fluorescentes , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Canal Liberador de Calcio Receptor de Rianodina/síntesis química , Coloración y Etiquetado , Termodinámica
12.
Sci Signal ; 7(337): ra74, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25097034

RESUMEN

Precise regulation of the kinetics and magnitude of Ca(2+) signaling enables this signal to mediate diverse responses, such as cell migration, differentiation, vesicular trafficking, and cell death. We showed that the Ca(2+)-binding protein calmodulin (CaM) acted in a positive feedback loop to potentiate Ca(2+) signaling downstream of the Tec kinase family member Itk. Using NMR (nuclear magnetic resonance), we mapped CaM binding to two loops adjacent to the lipid-binding pocket within the Itk pleckstrin homology (PH) domain. The Itk PH domain bound synergistically to Ca(2+)/CaM and the lipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], such that binding to Ca(2+)/CaM enhanced the binding to PI(3,4,5)P3 and vice versa. Disruption of CaM binding attenuated Itk recruitment to the membrane and diminished release of Ca(2+) from the endoplasmic reticulum. Moreover, disruption of this feedback loop abrogated Itk-dependent production of the proinflammatory cytokine IL-17A (interleukin-17A) by CD4(+) T cells. Additionally, we found that CaM associated with PH domains from other proteins, indicating that CaM may regulate other PH domain-containing proteins.


Asunto(s)
Vías Biosintéticas/fisiología , Señalización del Calcio/fisiología , Calmodulina/metabolismo , Interleucina-17/biosíntesis , Modelos Moleculares , Fosfatidilinositoles/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Vías Biosintéticas/genética , Linfocitos T CD4-Positivos/metabolismo , Señalización del Calcio/genética , Calmodulina/química , Retículo Endoplásmico/metabolismo , Immunoblotting , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Tirosina Quinasas/química
13.
Biophys Chem ; 159(1): 1-5, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840113

RESUMEN

In 2011, the Gibbs Conference on Biothermodynamics will celebrate its 25th anniversary. Since the inaugural meeting in 1987, it has brought together laboratories that lived, breathed and argued about the molecular logic of macromolecular machines. The participants have a deep commitment to understanding the nature of physico-chemical forces that govern regulation of biological systems, and share a passion for applying linkage theory. The collective goal is to understand how ligand binding, subunit assembly and conformational change drive what we observe as physiological processes such as regulated transport, enzyme cascades, gene regulation, membrane permeability, viral infection, intracellular trafficking and folding of macromolecules. In this special issue, articles by former organizers of the Gibbs Conference showcase the current breadth and depth of the field of biothermodynamics, and how thoroughly it is integrated with the study of macromolecular structures, computational modeling and physiological studies of human health and disease.


Asunto(s)
Biofisica/historia , Congresos como Asunto/historia , Termodinámica , Aniversarios y Eventos Especiales , Biofisica/tendencias , Congresos como Asunto/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos
14.
Biophys Chem ; 159(1): 172-87, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21757287

RESUMEN

Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca(2+) channel (Ca(V)1.2) regulates Ca(2+) entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with Ca(V)1.2 under low resting [Ca(2+)], but is poised to change conformation and position when intracellular [Ca(2+)] rises. CaM binding Ca(2+), and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A(1588), and C(1614) and the IQ motif studied as overlapping peptides IQ(1644) and IQ'(1650) as well as their effect on calcium binding. (Ca(2+))(4)-CaM bound to all four peptides very favorably (K(d)≤2 nM). Linkage analysis showed that IQ(1644-1670) bound with a K(d)~1 pM. In the pre-IQ region, (Ca(2+))(2)-N-domain bound preferentially to A(1588), while (Ca(2+))(2)-C-domain preferred C(1614). When bound to C(1614), calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo L/química , Calmodulina/química , Dominio Catalítico , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Ratas , Termodinámica
15.
Structure ; 19(5): 733-47, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21439835

RESUMEN

The neuronal voltage-dependent sodium channel (Na(v)1.2), essential for generation and propagation of action potentials, is regulated by calmodulin (CaM) binding to the IQ motif in its α subunit. A peptide (Na(v)1.2(IQp), KRKQEEVSAIVIQRAYRRYLLKQKVKK) representing the IQ motif had higher affinity for apo CaM than (Ca(2+))(4)-CaM. Association was mediated solely by the C-domain of CaM. A solution structure (2KXW.pdb) of apo (13)C,(15)N-CaM C-domain bound to Na(v)1.2(IQp) was determined with NMR. The region of Na(v)1.2(IQp) bound to CaM was helical; R1902, an Na(v)1.2 residue implicated in familial autism, did not contact CaM. The apo C-domain of CaM in this complex shares features of the same domain bound to myosin V IQ motifs (2IX7) and bound to an SK channel peptide (1G4Y) that does not contain an IQ motif. Thermodynamic and structural studies of CaM-Na(v)1.2(IQp) interactions show that apo and (Ca(2+))(4)-CaM adopt distinct conformations that both permit tight association with Na(v)1.2(IQp) during gating.


Asunto(s)
Potenciales de Acción/fisiología , Apoproteínas/química , Calcio/metabolismo , Calmodulina/química , Proteínas del Tejido Nervioso/química , Péptidos/síntesis química , Proteínas Recombinantes/química , Canales de Sodio/química , Secuencia de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Clonación Molecular , Escherichia coli , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Termodinámica
16.
Proteins ; 79(3): 765-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287611

RESUMEN

Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca(2+)-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaN(B) (the regulatory subunit) triggers conformational change in CaN(A) (the catalytic subunit). Two isoforms of CaN(A) (α, ß) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca(2+))4-CaM(1-148) bound to ßCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. ßCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from ßCaNp were ∼1 µM. A limiting K(d) ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. ßCaNp binding to ¹5N-(Ca(2+))4-CaM(1-148) monitored by ¹5N/¹HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and ßCaNp, and interpretation of intermolecular NOEs observed in the ¹³C-edited and ¹²C-¹4N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the ßCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of ßCaN.


Asunto(s)
Calcineurina/química , Calmodulina/química , Termodinámica , Secuencia de Aminoácidos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Homología de Secuencia de Aminoácido
17.
Proteins ; 78(10): 2265-82, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20544963

RESUMEN

Trifluoperazine (TFP; Stelazine) is an antagonist of calmodulin (CaM), an essential regulator of calcium-dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca(2+))(4)-CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the "open" conformation seen in CaM-kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca(2+))(4)-CaM and explore differential effects on the N- and C-domains of CaM, stoichiometric TFP titrations of CaM were monitored by (15)N-HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca(2+))(4)-CaM. In both cases, the preferred site was in the C-domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP-binding sites in apo CaM appeared distinct from those in (Ca(2+))(4)-CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ-motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N-domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the "closed," "semi-open," and "open" domains of CaM. In physiological processes, apo CaM, as well as (Ca(2+))(4)-CaM, needs to be considered a potential target of drug action.


Asunto(s)
Antipsicóticos/química , Calcio/química , Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Trifluoperazina/química , Trifluoperazina/metabolismo , Animales , Antipsicóticos/metabolismo , Sitios de Unión/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calmodulina/antagonistas & inhibidores , Calmodulina/sangre , Calmodulina/genética , Biología Computacional , Bases de Datos de Proteínas , Cinética , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Concentración Osmolar , Paramecium/metabolismo , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
18.
Methods Enzymol ; 466: 503-26, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21609874

RESUMEN

Calmodulin (CaM) is a small (148 amino acid), ubiquitously expressed eukaryotic protein essential for Ca(2+) regulation and signaling. This highly acidic polypeptide (pI<4) has two homologous domains (N and C), each consisting of two EF-hand Ca(2+)-binding sites. Despite significant homology, the domains have intrinsic differences in their Ca(2+)-binding properties and separable roles in regulating physiological targets such as kinases and ion channels. In mammalian full-length CaM, sites III and IV in the C-domain bind Ca(2+) cooperatively with ~10-fold higher affinity than sites I and II in the N-domain. However, the difference is only twofold when CaM is severed at residue 75, indicating that anticooperative interactions occur in full-length CaM. The Ca(2+)-binding properties of sites I and II are regulated by several factors including the interplay of interdomain linker residues far from the binding sites. Our prior thermodynamic studies showed that these residues inhibit thermal denaturation and decrease calcium affinity. Based on high-resolution structures and NMR spectra, there appear to be interactions between charged residues in the sequence 75-80 and those near the amino terminus of CaM. To explore electrostatic contributions to interdomain interactions in CaM, KCl was used to perturb the Ca(2+)-binding affinity, thermal stability, and hydrodynamic size of a nested set of recombinant mammalian CaM (rCaM) fragments terminating at residues 75, 80, 85, or 90. Potassium chloride is known to decrease Ca(2+)-binding affinity of full-length CaM. It may act directly by competition with acidic side chains that chelate Ca(2+) in the binding sites, and indirectly elsewhere in the molecule by changing tertiary constraints and conformation. In all proteins studied, KCl decreased Ca(2+)-affinity, decreased Stokes radius, and increased thermal stability, but not monotonically. Crystallographic structures of Ca(2+)-saturated rCaM(1-75) (3B32.pdb) and rCaM(1-90) (3IFK.pdb) were determined, offering cautionary notes about the effect of packing interactions on flexible linkers. This chapter describes an array of methods for characterizing system-specific thermodynamic properties that in concert govern structure and function.


Asunto(s)
Calmodulina/química , Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Calmodulina/genética , Cristalografía por Rayos X/métodos , Fluorometría/métodos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
19.
Proteins ; 76(1): 47-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19089983

RESUMEN

Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium-depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca(2+))(4)-CaM to a basic amphipathic helix in CaMKII releases auto-inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM-binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C-domain of CaM primarily contacts the N-terminal half of the CaMBD. The two domains of calcium-saturated CaM are believed to play distinct roles in releasing auto-inhibition. To investigate the underlying mechanism of activation, calcium-dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C-domain having a 35-fold greater affinity than the N-domain. Because the interdomain linker of CaM regulates calcium-binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site-knockout mutants affecting the calcium-binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium-binding sites and CaM-domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca(2+))(4)-CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium-binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF-hands of CaM.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calmodulina/química , Calmodulina/aislamiento & purificación , Escherichia coli/genética , Polarización de Fluorescencia , Datos de Secuencia Molecular , Mutación , Péptidos/síntesis química , Unión Proteica , Ratas , Termodinámica , Volumetría
20.
Cell ; 133(3): 462-74, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455987

RESUMEN

Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA-/- mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Metionina/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Angiotensina II , Animales , Apoptosis , Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Calmodulina/metabolismo , Metionina Sulfóxido Reductasas , Ratones , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Oxidación-Reducción , Oxidorreductasas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...