RESUMEN
Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/metabolismo , Necroptosis/fisiología , Proteínas Quinasas/metabolismo , Modelos Animales de Enfermedad , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismoRESUMEN
SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) are major infectious causes of death, with meta-analyses and population-based studies finding increased mortality in co-infected patients simultaneously diagnosed with COVID-19 and tuberculosis (TB). There is a need to understand the immune interaction between SARS-CoV-2 and Mtb which impacts poor outcomes for those co-infected. We performed a PubMed and preprint search using keywords [SARS-CoV-2] AND [tuberculosis] AND [Immune response], including publications after January 2020, excluding reviews or opinions. Abstracts were evaluated by authors for inclusion of data specifically investigating the innate and/or acquired immune responses to SARS-CoV-2 and Mtb in humans and animal models, immunopathological responses in co-infection and both trials and investigations of potential protection against SARS-CoV-2 by Bacille Calmette Guérin (BCG). Of the 248 articles identified, 39 were included. Incidence of co-infection is discussed, considering in areas with a high burden of TB, where reported co-infection is likely underestimated. We evaluated evidence of the clinical association between COVID-19 and TB, discuss differences and similarities in immune responses in humans and in murine studies, and the implications of co-infection. SARS-CoV-2 and Mtb have both been shown to modulate immune responses, particularly of monocytes, macrophages, neutrophils, and T cells. Co-infection may result in impaired immunity to SARS-CoV-2, with an exacerbated inflammatory response, while T cell responses to Mtb may be modulated by SARS-CoV-2. Furthermore, there has been no proven potential COVID-19 clinical benefit of BCG despite numerous large-scale clinical trials.
Asunto(s)
COVID-19 , Coinfección , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , SARS-CoV-2 , Tuberculosis/prevención & controlRESUMEN
HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4+ T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance. Venetoclax, a pro-apoptotic inhibitor of Bcl-2, depletes total and intact HIV-1 DNA in CD4+ T cells from PLWH ex vivo. This venetoclax-sensitive population is enriched for cells with transcriptionally higher levels of pro-apoptotic BH3-only proteins. Furthermore, venetoclax delays viral rebound in a mouse model of persistent HIV-1 infection, and the combination of venetoclax with the Mcl-1 inhibitor S63845 achieves a longer delay in rebound compared with either intervention alone. Thus, selective inhibition of pro-survival proteins can induce death of HIV-1-infected cells that persist on ART, extending time to viral rebound.
Asunto(s)
Seropositividad para VIH , VIH-1 , Humanos , Animales , Ratones , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Modelos Animales de EnfermedadRESUMEN
The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Ratones , Animales , Anciano , SARS-CoV-2/genética , COVID-19/genética , Virulencia/genética , Mutación , Modelos Animales de EnfermedadRESUMEN
Background: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood. Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline 18F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy. All participants had intensive baseline screening with spontaneous, followed by induced, sputum sampling and were then observed for an average of 4.7 years for culture-positive disease. Baseline PET/CT abnormalities were evaluated in relation to culture-positive disease. Results: At baseline, 59 (23.6%) participants had lung PET/CT findings consistent with TB of which 29 (11.6%) were defined as Subclinical TB, and 30 (12%) Subclinical TB-inactive. A further 83 (33.2%) had other lung parenchymal abnormalities and 108 (43.2%) had normal lungs. Over 1107-person years of follow-up 14 cases of culture-positive TB were diagnosed. Six cases were detected by intensive baseline screening, all would have been missed by the South African symptom-based screening strategy and only one detected by a WHO-recommended chest X-Ray screening strategy. Those with baseline Subclinical TB lesions on PET/CT were significantly more likely to be diagnosed with culture-positive TB over the study period, compared to those with normal lung parenchyma (10/29 [34.5%] vs 2/108 [1.9%], Hazard Ratio 22.37 [4.89-102.47, p<0.001]). Conclusions: These findings challenge the latent/active TB paradigm demonstrating that subclinical disease exists up to 4 years prior to microbiological detection and/or symptom onset. There are important implications for screening and management of TB.
RESUMEN
When profiling blood samples by RNA-sequencing (RNA-seq), RNA from haemoglobin (Hgb) can account for up to 70% of the transcriptome. Due to considerations of sequencing depth and power to detect biological variation, Hgb RNA is typically depleted prior to sequencing by hybridisation-based methods; an alternative approach is to deplete reads arising from Hgb RNA bioinformatically. In the present study, we compared the impact of these two approaches on the outcome of differential gene expression analysis performed using RNA-seq data from 58 human tuberculosis (TB) patient or contact whole blood samples-29 globin kit-depleted and 29 matched non-depleted-a subset of which were taken at TB diagnosis and at six months post-TB treatment from the same patient. Bioinformatic depletion of Hgb genes from the non-depleted samples (bioinformatic-depleted) substantially reduced library sizes (median = 57.24%) and fewer long non-coding, micro, small nuclear and small nucleolar RNAs were captured in these libraries. Profiling published TB gene signatures across all samples revealed inferior correlation between kit-depleted and bioinformatic-depleted pairs when the proportion of reads mapping to Hgb genes was higher in the non-depleted sample, particularly at the TB diagnosis time point. A set of putative "globin-fingerprint" genes were identified by directly comparing kit-depleted and bioinformatic-depleted samples at each timepoint. Two TB treatment response signatures were also shown to have decreased differential performance when comparing samples at TB diagnosis to six months post-TB treatment when profiled on the bioinformatic-depleted samples compared with their kit-depleted counterparts. These results demonstrate that failure to deplete Hgb RNA prior to sequencing has a negative impact on the sensitivity to detect disease-relevant gene expression changes even when bioinformatic removal is performed.
Asunto(s)
Perfilación de la Expresión Génica , Hemoglobinas , ARN , Humanos , Perfilación de la Expresión Génica/métodos , Hemoglobinas/genética , ARN/genética , ARN Mensajero/genética , RNA-Seq , Análisis de Secuencia de ARN , Transcriptoma , Biología ComputacionalRESUMEN
BACKGROUND: Disease caused by the capsular group B meningococcus (MenB) is the leading cause of infectious death in UK infants. A novel adenovirus-based vaccine encoding the MenB factor H binding protein (fHbp) with an N-terminal dual signal sequence induces high titres of protective antibody after a single dose in mice. A panel of N-terminal signal sequence variants were created to assess the contribution of components of this sequence to transgene expression kinetics of the encoded antigen from mammalian cells and the resultant effect on immunogenicity of fHbp. RESULTS: The full-length signal sequence (FL SS) resulted in superior early antigen expression compared with the panel of variants, as measured by flow cytometry and confocal imaging, and supported higher bactericidal antibody levels against the expressed antigen in mouse sera < 6 weeks post-immunisation than the licensed four component MenB vaccine. The FL SS also significantly increased antigen-specific T cell responses against other adenovirus-encoded bacterial antigens in mice. CONCLUSIONS: These findings demonstrate that the FL SS enhances immunogenicity of the encoded antigen, supporting its inclusion in other viral vectored bacterial antigen transgenes.
RESUMEN
Current and previous tuberculosis (TB) increase the risk of COVID-19 mortality and severe disease. To identify mechanisms of immunopathogenic interaction between COVID-19 and TB, we performed a systematic review and patient-level meta-analysis of COVID-19 transcriptomic signatures, spanning disease severity, from whole blood, PBMCs, and BALF. 35 eligible signatures were profiled on 1181 RNA-seq samples from 853 individuals across the spectrum of TB infection. Thirteen COVID-19 gene-signatures had significantly higher "COVID-19 risk scores" in active TB and latent TB progressors compared with non-progressors and uninfected controls (p<0·005), in three independent cohorts. Integrative single-cell-RNAseq analysis identified FCN1- and SPP1-expressing macrophages enriched in severe COVID-19 BALF and active TB blood. Gene ontology and protein-protein interaction networks identified 12-gene disease-exacerbation hot spots between COVID-19 and TB. Finally, we in vitro validated that SARS-CoV-2 infection is increased in human macrophages cultured in the inflammatory milieu of Mtb-infected macrophages, correlating with TMPRSS2, IFNA1, IFNB1, IFNG, TNF, and IL1B induction.
RESUMEN
BACKGROUND: Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS: In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION: These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Asunto(s)
COVID-19 , Vacunas Virales , Adenoviridae/genética , Animales , Vacunas contra la COVID-19 , Epigénesis Genética , Vectores Genéticos/genética , Humanos , Inmunización , Ratones , SARS-CoV-2RESUMEN
IFN-γ-driven responses to malaria have been shown to modulate the development and function of T follicular helper (TFH) cells and memory B cells (MBCs), with conflicting evidence of their involvement in the induction of antibody responses required to achieve clinical immunity and their association with disease outcomes. Using high-dimensional single-cell mass cytometry, we identified distinct populations of TH1-polarized CD4+ T cells and MBCs expressing the TH1-defining transcription factor T-bet, associated with either increased or reduced risk of Plasmodium vivax (P. vivax) malaria, demonstrating that inflammatory responses to malaria are not universally detrimental for infection. Furthermore, we found that, whereas class-switched but not IgM+ MBCs were associated with a reduced risk of symptomatic malaria, populations of TH1 cells with a stem central memory phenotype, TH17 cells, and T regulatory cells were associated with protection from asymptomatic infection, suggesting that activation of cell-mediated immunity might also be required to control persistent P. vivax infection with low parasite burden.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Malaria Vivax/inmunología , Células B de Memoria/inmunología , Infección Persistente/inmunología , Plasmodium vivax/inmunología , Antimaláricos/uso terapéutico , Infecciones Asintomáticas , Linfocitos T CD4-Positivos/metabolismo , Estudios Transversales , Voluntarios Sanos , Humanos , Inmunidad Celular , Inmunofenotipificación/métodos , Indonesia , Malaria Vivax/sangre , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Células B de Memoria/metabolismo , Infección Persistente/sangre , Infección Persistente/parasitología , Plasmodium vivax/aislamiento & purificaciónRESUMEN
BACKGROUND: The novel coronavirus, SARS-CoV-2, has increased the burden on healthcare systems already strained by a high incidence of tuberculosis (TB) as co-infection and dual presentation are occurring in syndemic settings. We aimed to understand the interaction between these diseases by profiling COVID-19 gene expression signatures on RNA-sequencing data from TB-infected individuals. METHODS: We performed a systematic review and patient-level meta-analysis by querying PubMed and pre-print servers to derive eligible COVID-19 gene expression signatures from human whole blood (WB), PBMCs or BALF studies. A WB influenza dataset served as a control respiratory disease signature. Three large TB RNA-seq datasets, comprising multiple cohorts from the UK and Africa and consisting of TB patients across the disease spectrum, were chosen to profile these signatures. Putative "COVID-19 risk scores" were generated for each sample in the TB datasets using the TBSignatureProfiler package. Risk was stratified by time to TB diagnosis in progressors and contacts of pulmonary and extra-pulmonary TB. An integrative analysis between TB and COVID-19 single-cell RNA-seq data was performed and a population-level meta-analysis was conducted to identify shared gene ontologies between the diseases and their relative enrichment in COVID-19 disease severity states. RESULTS: 35 COVID-19 gene signatures from nine eligible studies comprising 98 samples were profiled on TB RNA-seq data from 1181 samples from 853 individuals. 25 signatures had significantly higher COVID-19 risk in active TB (ATB) compared with latent TB infection (p <0·005), 13 of which were validated in two independent datasets. FCN1 - and SPP1 -expressing macrophages enriched in BALF during severe COVID-19 were identified in circulation during ATB. Shared perturbed ontologies included antigen presentation, epigenetic regulation, platelet activation, and ROS/RNS production were enriched with increasing COVID-19 severity. Finally, we demonstrate that the overlapping transcriptional responses may complicate development of blood-based diagnostic signatures of co-infection. INTERPRETATION: Our results identify shared dysregulation of immune responses in COVID-19 and TB as a dual risk posed by co-infection to COVID-19 severity and TB disease progression. These individuals should be followed up for TB in the months subsequent to SARS-CoV-2 diagnosis.
RESUMEN
Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post-vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP-IPV-Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post-vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G-CSF, IL-1RA and IL-6. Post-vaccination fever was associated with increased expression of SELL, involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin-3, -5 and GM-CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine.
Asunto(s)
Fiebre/genética , Inmunidad/genética , Vacunas Meningococicas/inmunología , Animales , Análisis Químico de la Sangre , Vacuna contra Difteria, Tétanos y Tos Ferina/efectos adversos , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Femenino , Fiebre/sangre , Fiebre/epidemiología , Fiebre/etiología , Perfilación de la Expresión Génica , Vacunas contra Haemophilus/efectos adversos , Vacunas contra Haemophilus/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Incidencia , Lactante , Masculino , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/efectos adversos , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Vacunas Neumococicas/efectos adversos , Vacunas Neumococicas/inmunología , Vacuna Antipolio de Virus Inactivados/efectos adversos , Vacuna Antipolio de Virus Inactivados/inmunología , Proteoma/análisis , Transcriptoma , Vacunación/efectos adversos , Vacunas Conjugadas/efectos adversos , Vacunas Conjugadas/inmunologíaRESUMEN
The capsular group B meningococcal (MenB) four component vaccine (4CMenB) has been licensed for the prevention of invasive disease caused by MenB. The vaccine causes fever in infants, particularly when given in combination (concomitant) with other routinely-administered vaccines (routine), such as the standard diphtheria, tetanus, pertussis (DTP)-containing vaccine. To assess the suitability of a mouse immunisation model to study this phenomenon, we monitored temperature in mice after a second dose of routine vaccines, with or without 4CMenB, and compared the results with those in humans. Using this mouse model, we explored the reactogenicity of 4CMenB components by measuring changes in temperature, cytokines, and gene expression induced by 4CMenB, one of its components, wild-type or attenuated endotoxin outer membrane vesicles (OMVs), or lipopolysaccharide (LPS). A significant rise (p < 0.01) in temperature was observed in mice immunised with 4CMenB, wild-type OMVs, and LPS. RNA-sequencing of mouse whole blood revealed a gene signature shared by the 4CMenB, OMV, and LPS groups consisting of bacterial pattern recognition receptors and neutrophil activation marker genes. Sequencing of neutrophils isolated after concomitant 4CMenB identified cells expressing the OMV-associated genes Plek and Lcp1. Immunisation with 4CMenB or OMVs led to increased IL-6 in serum and significant upregulation (p < 0.0001) of prostaglandin-synthesising enzymes on brain tissue. These data demonstrate the suitability of a mouse model for assessing vaccine reactogenicity and strongly indicate that the fever following vaccination with 4CMenB in human infants is induced by endotoxin contained in the OMV component of the vaccine.
Asunto(s)
Membrana Externa Bacteriana/inmunología , Endotoxinas/inmunología , Infecciones Meningocócicas/inmunología , Vacunas Meningococicas/inmunología , Transcriptoma/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Inmunización/métodos , Esquemas de Inmunización , Interleucina-6/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Determinación de Anticuerpos Séricos Bactericidas/métodos , Vacunación/métodosRESUMEN
Vaccination is a principal and highly cost-effective means of controlling infectious diseases, providing direct protection against pathogens by conferring long-lasting immunological memory and inducing population-level herd immunity. Despite rapid ongoing progress in vaccinology, there remain many obstacles to the development and deployment of novel or improved vaccines; these include the underlying science of how to induce and sustain appropriate protective immune responses as well as bureaucratic, logistic and socio-political hurdles. The failure to distribute and administer existing vaccines to at-risk communities continues to account for a large proportion of infant mortality worldwide: almost 20 million children do not have access to basic vaccines and several million still die each year as a result. While emerging epidemic or pandemic diseases pose a significant threat to global health and prosperity, there are many infectious diseases which provide a continuous or cyclical burden on healthcare systems which also need to be addressed. Gaps in knowledge of the human immune system stand in the way of developing technologies to overcome individual and pathogenic variation. The challenges in tackling infectious disease and directions that the field of preventive medicine may take to improve the current picture of global health are the focus of this review.
Asunto(s)
Predicción , Pandemias/prevención & control , Vacunación/métodos , Vacunación/tendencias , Vacunas/administración & dosificación , Adolescente , Anciano , Preescolar , Salud Global , Humanos , LactanteRESUMEN
BACKGROUND: Direct-acting antivirals (DAAs) have significantly improved the treatment response in HCV chronic infection with higher potency and better tolerance. We established the prevalence of naturally occurring NS5A and NS5B inhibitor resistance-associated mutations (RAMs) in HCV genotype (GT)-1 chronically infected individuals in Ireland. METHODS: In a multicentre cohort study, employing sequencing-based analysis, the presence of RAMs was determined in the HCV NS5A (n=119) and the NS5B (n=60). RESULTS: Naturally occurring RAMs in NS5A (M28V, R30Q, L31I, P58S, E62D and Y93H) were identified in 14.3% (17/119) of cases. Notably, the major RAM Y93H was found in 15.2% (7/46) of GT-1b versus none (0/73) in GT-1a (P=0.0009). The frequency of Y93H present in IFNL3 rs12979860 CC major homozygotes (30%, 3/10) was higher than in the non-CC group (11.1%, 4/36). GT-1b-infected individuals harbouring Y93H had significantly higher viral loads than those without this mutation (P=0.006). Additionally, two novel insertions in GT-1a and GT-1b were identified in the NS5A interferon sensitivity-determining region. In NS5B, only minor pre-existing RAMs (L159F, C316N and I434M) were detected in 10% (6/60) of samples. The proportion of individuals harbouring multiple RAMs in different DAA target regions was low. CONCLUSIONS: RAMs to novel DAAs were infrequent in the DAA-naive population in the present study. The NS5A Y93H substitution was the only significant RAM identified. Given the low frequency of multiple RAMs in NS3, NS5A and NS5B regions and the unclear impact of pre-existing Y93H on the response in combination therapies, the role of pre-treatment RAM analysis in treatment-naive individuals requires further investigation.