Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(749): eabp8334, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809966

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease driven by gain-of-function variants in activin receptor-like kinase 2 (ALK2), the most common variant being ALK2R206H. In FOP, ALK2 variants display increased and dysregulated signaling through the bone morphogenetic protein (BMP) pathway resulting in progressive and permanent replacement of skeletal muscle and connective tissues with heterotopic bone, ultimately leading to severe debilitation and premature death. Here, we describe the discovery of BLU-782 (IPN60130), a small-molecule ALK2R206H inhibitor developed for the treatment of FOP. A small-molecule library was screened in a biochemical ALK2 binding assay to identify potent ALK2 binding compounds. Iterative rounds of structure-guided drug design were used to optimize compounds for ALK2R206H binding, ALK2 selectivity, and other desirable pharmacokinetic properties. BLU-782 preferentially bound to ALK2R206H with high affinity, inhibiting signaling from ALK2R206H and other rare FOP variants in cells in vitro without affecting signaling of closely related homologs ALK1, ALK3, and ALK6. In vivo efficacy of BLU-782 was demonstrated using a conditional knock-in ALK2R206H mouse model, where prophylactic oral dosing reduced edema and prevented cartilage and heterotopic ossification (HO) in both muscle and bone injury models. BLU-782 treatment preserved the normal muscle-healing response in ALK2R206H mice. Delayed dosing revealed a short 2-day window after injury when BLU-782 treatment prevented HO in ALK2R206H mice, but dosing delays of 4 days or longer abrogated HO prevention. Together, these data suggest that BLU-782 may be a candidate for prevention of HO in FOP.


Asunto(s)
Modelos Animales de Enfermedad , Miositis Osificante , Osificación Heterotópica , Animales , Miositis Osificante/tratamiento farmacológico , Miositis Osificante/metabolismo , Osificación Heterotópica/tratamiento farmacológico , Osificación Heterotópica/metabolismo , Osificación Heterotópica/prevención & control , Ratones , Humanos , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo I/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
2.
Elife ; 122024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270583

RESUMEN

Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light-controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system and introduce a powerful new tool for bacterial optogenetics.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteolisis , Escherichia coli/genética , Luz Azul , Ingeniería Metabólica , Optogenética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Proteínas de Escherichia coli/genética
3.
ACS Synth Biol ; 12(6): 1574-1578, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37322886

RESUMEN

As the impacts of engineering biology grow, it is important to introduce the field early and in an accessible way. However, teaching engineering biology poses challenges, such as limited representation of the field in widely used scientific textbooks or curricula, and the interdisciplinary nature of the subject. We have created an adaptable curriculum module that can be used by anyone to teach the basic principles and applications of engineering biology. The module consists of a versatile, concept-based slide deck designed by experts across engineering biology to cover key topic areas. Starting with the design, build, test, and learn cycle, the slide deck covers the framework, core tools, and applications of the field at an undergraduate level. The module is available for free on a public website and can be used in a stand-alone fashion or incorporated into existing curricular materials. Our aim is that this modular, accessible slide deck will improve the ease of teaching current engineering biology topics and increase public engagement with the field.


Asunto(s)
Curriculum , Biología Sintética
4.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36865169

RESUMEN

Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system, and introduce a powerful new tool for bacterial optogenetics.

5.
Nat Commun ; 14(1): 1034, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823420

RESUMEN

Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.


Asunto(s)
Antibacterianos , Optogenética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Microbiana , Tetraciclina/farmacología , Carbenicilina/metabolismo , Escherichia coli/metabolismo
6.
Dev Dyn ; 252(4): 483-494, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36495293

RESUMEN

BACKGROUND: Frem1 has been linked to human face shape variation, dysmorphology, and malformation, but little is known about its regulation and biological role in facial development. RESULTS: During midfacial morphogenesis in mice, we observed Frem1 expression in the embryonic growth centers that form the median upper lip, nose, and palate. Expansive spatial gradients of Frem1 expression in the cranial neural crest cell (cNCC) mesenchyme of these tissues suggested transcriptional regulation by a secreted morphogen. Accordingly, Frem1 expression paralleled that of the conserved Sonic Hedgehog (Shh) target gene Gli1 in the cNCC mesenchyme. Suggesting direct transcriptional regulation by Shh signaling, we found that Frem1 expression is induced by SHH ligand stimulation or downstream pathway activation in cNCCs and observed GLI transcription factor binding at the Frem1 transcriptional start site during midfacial morphogenesis. Finally, we found that FREM1 is sufficient to induce cNCC proliferation in a concentration-dependent manner and that Shh pathway antagonism reduces Frem1 expression during pathogenesis of midfacial hypoplasia. CONCLUSIONS: By demonstrating that the Shh signaling pathway regulates Frem1 expression in cNCCs, these findings provide novel insight into the mechanisms underlying variation in midfacial morphogenesis.


Asunto(s)
Proteínas Hedgehog , Cresta Neural , Ratones , Animales , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Morfogénesis/genética , Transducción de Señal/fisiología , Mesodermo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
7.
Dev Biol ; 492: 133-138, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270327

RESUMEN

BioID is a proximity labeling strategy whose goal is to identify in vivo protein-protein interactions. The central components of this strategy are modified biotin ligase enzymes that promiscuously add biotin groups to proteins in close proximity. The transferred biotin group provides a powerful tag for purification and thus identification of interacting proteins. While a variety of modified biotin ligases were created for BioID, the original enzymes were inefficient, required long incubation times, and high intracellular biotin concentrations for protein labeling. These limitations hinder the application of BioID in contexts such as developing embryos where processes such as cell division and cell fate decisions occur rapidly. Recently, a new biotin ligase called TurboID was developed that addressed many of the deficiencies of previous enzymes. In this paper we compare TurboID to the BioID2 biotin ligase in developing Xenopus embryos. We find that the TurboID enzyme has several advantages over the BioID2 enzyme. TurboID labels proteins efficiently without the addition of additional biotin and occurs at a range of temperatures compatible with the culturing of Xenopus embryos. Biotinylation events occurred rapidly and were limited by TurboID expression and not its activity. Thus, TurboID is an efficient tool for BioID applications in Xenopus embryos and its use should facilitate the identification of interacting proteins in specific networks and complexes during Xenopus development.


Asunto(s)
Biotina , Ligasas , Animales , Xenopus laevis , Biotinilación
8.
Front Cell Dev Biol ; 10: 981696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158189

RESUMEN

Bicaudal-C (Bicc1) is an evolutionarily conserved RNA binding protein that functions in a regulatory capacity in a variety of contexts. It was originally identified as a genetic locus in Drosophila that when disrupted resulted in radical changes in early development. In the most extreme phenotypes embryos carrying mutations developed with mirror image duplications of posterior structures and it was this striking phenotype that was responsible for the name Bicaudal. These seminal studies established Bicc1 as an important regulator of Drosophila development. What was not anticipated from the early work, but was revealed subsequently in many different organisms was the broad fundamental impact that Bicc1 proteins have on developmental biology; from regulating cell fates in vertebrate embryos to defects associated with several human disease states. In the following review we present a perspective of Bicc1 focusing primarily on the molecular aspects of its RNA metabolism functions in vertebrate embryos.

9.
Nat Commun ; 12(1): 5482, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531379

RESUMEN

Rotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown. We previously showed that flow down-regulates mRNA expression of the Nodal inhibitor Dand5 in left sensory cells. De-repression of the co-expressed Nodal, complexed with the TGFß growth factor Gdf3, drives LPM Nodal cascade induction. Here, we show that post-transcriptional repression of dand5 is a central process in symmetry breaking of Xenopus, zebrafish and mouse. The RNA binding protein Bicc1 was identified as a post-transcriptional regulator of dand5 and gdf3 via their 3'-UTRs. Two distinct Bicc1 functions on dand5 mRNA were observed at pre- and post-flow stages, affecting mRNA stability or flow induced translational inhibition, respectively. To repress dand5, Bicc1 co-operates with Dicer1, placing both proteins in the process of flow sensing. Intriguingly, Bicc1 mediated translational repression of a dand5 3'-UTR mRNA reporter was responsive to pkd2, suggesting that a flow induced Pkd2 signal triggers Bicc1 mediated dand5 inhibition during symmetry breakage.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Xenopus laevis/genética , Pez Cebra/genética , Regiones no Traducidas 3'/genética , Animales , Desarrollo Embrionario/genética , Ratones , Estabilidad del ARN/genética , Xenopus laevis/embriología , Pez Cebra/embriología
10.
11.
ACS Synth Biol ; 9(2): 227-235, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961670

RESUMEN

Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for Escherichia coli that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.


Asunto(s)
Escherichia coli/metabolismo , Integrasas/metabolismo , Luz , Optogenética/métodos , Dimerización , Genes Reporteros , Integrasas/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteína Fluorescente Roja
12.
Cancer Discov ; 9(12): 1686-1695, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31575540

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide with no clinically confirmed oncogenic driver. Although preclinical studies implicate the FGF19 receptor FGFR4 in hepatocarcinogenesis, the dependence of human cancer on FGFR4 has not been demonstrated. Fisogatinib (BLU-554) is a potent and selective inhibitor of FGFR4 and demonstrates clinical benefit and tumor regression in patients with HCC with aberrant FGF19 expression. Mutations were identified in the gatekeeper and hinge-1 residues in the kinase domain of FGFR4 upon disease progression in 2 patients treated with fisogatinib, which were confirmed to mediate resistance in vitro and in vivo. A gatekeeper-agnostic, pan-FGFR inhibitor decreased HCC xenograft growth in the presence of these mutations, demonstrating continued FGF19-FGFR4 pathway dependence. These results validate FGFR4 as an oncogenic driver and warrant further therapeutic targeting of this kinase in the clinic. SIGNIFICANCE: Our study is the first to demonstrate on-target FGFR4 kinase domain mutations as a mechanism of acquired clinical resistance to targeted therapy. This further establishes FGF19-FGFR4 pathway activation as an oncogenic driver. These findings support further investigation of fisogatinib in HCC and inform the profile of potential next-generation inhibitors.See related commentary by Subbiah and Pal, p. 1646.This article is highlighted in the In This Issue feature, p. 1631.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Resistencia a Antineoplásicos , Neoplasias Hepáticas/diagnóstico por imagen , Piranos/farmacología , Quinazolinas/farmacología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Mutación , Trasplante de Neoplasias , Dominios Proteicos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
13.
Development ; 146(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31023875

RESUMEN

Bicaudal-C (Bicc1) is a conserved RNA-binding protein that represses the translation of selected mRNAs to control development. In Xenopus embryos, Bicc1 binds and represses specific maternal mRNAs to control anterior-posterior cell fates. However, it is not known how Bicc1 binds its RNA targets or how binding affects Bicc1-dependent embryogenesis. Focusing on the KH domains, we analyzed Bicc1 mutants for their ability to bind RNA substrates in vivo and in vitro Analyses of these Bicc1 mutants demonstrated that a single KH domain, KH2, was crucial for RNA binding in vivo and in vitro, while the KH1 and KH3 domains contributed minimally. The Bicc1 mutants were also assayed for their ability to repress translation, and results mirrored the RNA-binding data, with KH2 being the only domain essential for repression. Finally, maternal knockdown and rescue experiments indicated that the KH domains were essential for the regulation of embryogenesis by Bicc1. These data advance our understanding of how Bicc1 selects target mRNAs and provide the first direct evidence that the RNA binding functions of Bicc1 are essential for both Bicc1-dependent translational repression and maternal vertebrate development.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Animales , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Immunoblotting , Inmunoprecipitación , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Xenopus/genética , Xenopus laevis
14.
Methods Mol Biol ; 1920: 33-39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30737684

RESUMEN

The earliest steps of animal development depend upon posttranscriptional events that drive the embryonic cell cycle and guide cell fate decisions. The analysis of post-transcriptional regulatory events has relied upon the use of chimeric reporter mRNAs that encode firefly luciferase fused to potential regulatory sequences. A new and more sensitive luciferase developed recently called NanoLuc has the potential to improve reporter studies and provide new insights into the regulation of embryonic processes. Here I describe how to create and analyze reporter mRNAs encoding NanoLuc luciferase using extracts from microinjected Xenopus embryos.


Asunto(s)
Expresión Génica , Genes Reporteros , Luciferasas/genética , Mediciones Luminiscentes , Microinyecciones , ARN Mensajero/genética , Xenopus laevis/genética , Animales , Embrión no Mamífero , Técnicas In Vitro , Mediciones Luminiscentes/métodos , Plásmidos/genética , ARN Mensajero/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética , Xenopus laevis/metabolismo
15.
Cell Rep ; 24(9): 2248-2260, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157421

RESUMEN

Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies early-onset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP.


Asunto(s)
Fasciculación Axonal/genética , Proteínas/genética , Proteínas/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Axones/metabolismo , Axones/patología , Secuencia de Bases , Humanos , Mutación , Neuronas/metabolismo , Neuronas/patología , Transporte de Proteínas , Paraplejía Espástica Hereditaria/patología
16.
Cancer Discov ; 8(7): 836-849, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29657135

RESUMEN

The receptor tyrosine kinase rearranged during transfection (RET) is an oncogenic driver activated in multiple cancers, including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC), and papillary thyroid cancer. No approved therapies have been designed to target RET; treatment has been limited to multikinase inhibitors (MKI), which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome these limitations. In vitro, BLU-667 demonstrated ≥10-fold increased potency over approved MKIs against oncogenic RET variants and resistance mutants. In vivo, BLU-667 potently inhibited growth of NSCLC and thyroid cancer xenografts driven by various RET mutations and fusions without inhibiting VEGFR2. In first-in-human testing, BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with RET-altered NSCLC and MTC without notable off-target toxicity, providing clinical validation for selective RET targeting.Significance: Patients with RET-driven cancers derive limited benefit from available MKIs. BLU-667 is a potent and selective RET inhibitor that induces tumor regression in cancer models with RET mutations and fusions. BLU-667 attenuated RET signaling and produced durable clinical responses in patients with RET-altered tumors, clinically validating selective RET targeting. Cancer Discov; 8(7); 836-49. ©2018 AACR.See related commentary by Iams and Lovly, p. 797This article is highlighted in the In This Issue feature, p. 781.


Asunto(s)
Antineoplásicos/uso terapéutico , Mutación , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ret/genética , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Signal ; 44: 1-9, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29284139

RESUMEN

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.


Asunto(s)
Ciclina D1/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Cresta Neural/crecimiento & desarrollo , Animales , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Regulación de la Expresión Génica , Ratones , Cultivo Primario de Células , Transducción de Señal
18.
J Vis Exp ; (125)2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28784977

RESUMEN

Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.


Asunto(s)
Electroforesis en Gel de Poliacrilamida , Proteínas/metabolismo , ARN/metabolismo , Animales , Colorantes Fluorescentes/química , Proteínas de Neoplasias/genética , Unión Proteica , Proteínas/química , ARN/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Grabación en Video , Xenopus/metabolismo
19.
Adv Exp Med Biol ; 953: 49-82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27975270

RESUMEN

The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.


Asunto(s)
Desarrollo Embrionario/genética , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Xenopus laevis/crecimiento & desarrollo , Animales , Ciclo Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , ARN Mensajero/genética , Transcripción Genética , Xenopus laevis/genética
20.
Development ; 143(5): 864-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811381

RESUMEN

Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Desarrollo Embrionario , Femenino , MicroARNs/metabolismo , Mutación , Oligonucleótidos Antisentido/genética , Oocitos/metabolismo , Fenotipo , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA