Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856043

RESUMEN

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Dendritas , Corteza Entorrinal , Proteínas de la Matriz Extracelular , Ratones Noqueados , Proteínas del Tejido Nervioso , Proteína Reelina , Serina Endopeptidasas , Animales , Corteza Entorrinal/metabolismo , Dendritas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ratones , Interneuronas/metabolismo , Neuronas/metabolismo , Señalización del Calcio
2.
Int J Nanomedicine ; 19: 3891-3905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711613

RESUMEN

Introduction: The synthesis of nanoparticles using naturally occurring reagents such as vitamins, sugars, plant extracts, biodegradable polymers and microorganisms as reductants and capping agents could be considered attractive for nanotechnology. These syntheses have led to the fabrication of limited number of inorganic nanoparticles. Among the reagents mentioned above, plant-based materials seem to be the best candidates, and they are suitable for large-scale biosynthesis of nanoparticles. Methods: The aqueous extract of Moringa peregrina leaves was used to synthesize silver nanoparticles. The synthesized nanoparticles were characterized by various spectral studies including FT-IR, SEM, HR-TEM and XRD. In addition, the antioxidant activity of the silver nanoparticles was studied viz. DPPH, ABTS, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging potential and reducing power with varied concentrations. The anticancer potential of the nanoparticles was also studied against MCF-7 and Caco-2 cancer cell lines. Results: The results showed that silver nanoparticles displayed strong antioxidant activity compared with gallic acid. Furthermore, the anticancer potential of the nanoparticles against MCF-7 and Caco-2 in comparison with the standard Doxorubicin revealed that the silver nanoparticles produced significant toxic effects against the studied cancer cell lines with the IC50 values of 41.59 (Caco-2) and 26.93 (MCF-7) µg/mL. Conclusion: In conclusion, the biosynthesized nanoparticles using M. peregrina leaf aqueous extract as a reducing agent showed good antioxidant and anticancer potential on human cancer cells and can be used in biological applications.


Asunto(s)
Antioxidantes , Tecnología Química Verde , Nanopartículas del Metal , Moringa , Extractos Vegetales , Hojas de la Planta , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Células MCF-7 , Células CACO-2 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa/química , Antioxidantes/farmacología , Antioxidantes/química , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Front Neuroanat ; 17: 1306180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099210

RESUMEN

Neuropathic pain arises from damage or disorders affecting the somatosensory system. In rats, L5 nerve injury induces thermal and mechanical hypersensitivity/hyperalgesia. Recently, we demonstrated that applying resiniferatoxin (RTX) directly on uninjured L3 and L4 nerves alleviated thermal and mechanical hypersensitivity resulting from L5 nerve injury. Herein, using immunohistochemistry, Western blot, and qRT-PCR techniques, we reveal that perineural application of RTX (0.002%) on the L4 nerve substantially downregulated the expression of its receptor (Trpv1) and three different voltage-gated ion channels (Nav1.9, Kv4.3, and Cav2.2). These channels are found primarily in small-sized neurons and show significant colocalization with Trpv1 in the dorsal root ganglion (DRG). However, RTX treatment did not affect the expression of Kv1.1, Piezo2 (found in large-sized neurons without colocalization with Trpv1), and Kir4.1 (localized in satellite cells) in the ipsilateral DRGs. Furthermore, RTX application on L3 and L4 nerves reduced the activation of c-fos in the spinal neurons induced by heat stimulation. Subsequently, we investigated whether applying RTX to the L3 and L4 nerves 3 weeks before the L5 nerve injury could prevent the onset of neuropathic pain. Both 0.002 and 0.004% concentrations of RTX produced significant analgesic effects, while complete prevention of thermal and mechanical hypersensitivity required a concentration of 0.008%. Importantly, this preventive effect on neuropathic manifestations was not associated with nerve degeneration, as microscopic examination revealed no morphological changes. Overall, this study underscores the mechanisms and the significance of perineural RTX treatment applied to adjacent uninjured nerves in entirely preventing nerve injury-induced neuropathic pain in humans and animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...