RESUMEN
The use of chemical preservatives in the baking industry is a common practice to extend the shelf life of baked goods However, there is growing interest in natural alternatives due to worries about the security and potential health risks of these chemicals. The purpose of this concurrent review is to investigate the potential of using essential oils and bio-preservatives in place of chemical preservatives in the baking industry. With a focus on their efficiency in extending the shelf life of baked goods, the review includes a thorough analysis of the most recent research on the use of bio-preservatives and essential oils in food preservation. The findings suggest that bio-preservatives and essential oils can be effective in preserving baked goods and may offer a safer and more natural alternative to chemical preservatives. However, further research is needed to fully understand the potential of these natural alternatives and to optimize their use in the baking industry.
RESUMEN
The current study focuses on Punica granatum L. (pomegranate) peel and peel extract and their use as functional foods, food additives, or physiologically active constituents in nutraceutical formulations. The pomegranate peel extract is a good source of bioactive substances needed for the biological activity of the fruit, including phenolic acids, minerals, flavonoids (anthocyanins), and hydrolyzable tannins (gallic acid). The macromolecules found in pomegranate peel and peel extract have been recommended as substitutes for synthetic nutraceuticals, food additives, and chemo-preventive agents because of their well-known ethno-medical significance and chemical properties. Moreover, considering the promises for both their health-promoting activities and chemical properties, the dietary and nutraceutical significance of pomegranate peel and pomegranate peel extract appears to be underestimated. The present review article details their nutritional composition, phytochemical profile, food applications, nutraceutical action, and health benefits.
RESUMEN
Despite significant advances in pathogen survival and food cleaning measures, foodborne diseases continue to be the main reason for hospitalization or other fatality globally. Conventional antibacterial techniques including pasteurization, pressurized preparation, radioactivity, as well as synthetic antiseptics could indeed decrease bacterial activity in nutrition to variable levels, despite their serious downsides like an elevated upfront outlay, the possibility of accessing malfunctions due to one corrosiveness, as well as an adverse effect upon those the foodstuffs' organoleptic properties and maybe their nutritional significance. Greatest significantly, these cleansing methods eliminate all contaminants, including numerous (often beneficial) bacteria found naturally in food. A huge amount of scientific publication that discussed the application of virus bioremediation to treat a multitude of pathogenic bacteria in meals spanning between prepared raw food to fresh fruit and vegetables although since initial idea through using retroviruses on meals. Furthermore, the quantity of widely viable bacteriophage-containing medicines licensed for use in health and safety purposes has continuously expanded. Bacteriophage bio-control, a leafy and ordinary technique that employs lytic bacteriophages extracted from the atmosphere to selectively target pathogenic bacteria and remove meaningfully decrease their stages meals, is one potential remedy that solves some of these difficulties. It has been suggested that applying bacteriophages to food is a unique method for avoiding bacterial development in vegetables. Because of their selectivity, security, stability, and use, bacteriophages are desirable. Phages have been utilized in post-harvest activities, either alone or in combination with antimicrobial drugs, since they are effective, strain-specific, informal to split and manipulate. In this review to ensure food safety, it may be viable to use retroviruses as a spontaneous treatment in the thread pollution of fresh picked fruits and vegetables, dairy, and convenience foods.
RESUMEN
Stabilizers are essential components of manufactured products such as yogurt. The addition of stabilizers improves the body, texture, appearance, and mouth feel of yogurt while also preventing technical defects such as syneresis. A study was conducted to optimize the concentration of taro starch in yogurt. The yogurt was fortified at different concentrations of taro starch. Taro starch levels were 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3%, with different storage times (0, 14, and 28 days). The Tukey honesty test was used for mean comparison (p < .1). The results of the study showed that maximum moisture and protein content was taken by using 0.5% taro starch and stored for 0 days while maximum fat % was attained in 1.5% taro starch treatment and storage time was 0 days. The maximum water-holding capacity was increased by adding 1.5% taro starch under 14 days' storage time. Water-holding capacity started decreasing with the increasing taro concentration. The acidity of yogurt started increasing with the increasing taro starch and the maximum acidity was taken at 2.5% taro starch concentration. The viscosity of the yogurt was maximum at 2% taro starch. As far as it concerned, sensory evolution, aroma, and taste started changing with the increasing taro starch concentration and increasing storage time. The study's goals were to optimize the taro concentration for stabilizing the yogurt synthesis and to probe the impact of taro starch on the physiochemical attributes of yogurt.
RESUMEN
The use of proteinaceous material is desired as it forms a protective gelation around the active core, making it safe through temperature, pH, and O2 in the stomach and intestinal environment. During the boom of functional food utilization in this era of advancement in drug delivery systems, there is a dire need to find more protein sources that could be explored for the potential of being used as encapsulation materials, especially vegetable proteins. This review covers certain examples which need to be explored to form an encapsulation coating material, including soybeans (conglycinin and glycinin), peas (vicilin and convicilin), sunflower (helianthins and albumins), legumes (glutenins and albumins), and proteins from oats, rice, and wheat. This review covers recent interventions exploring the mentioned vegetable protein encapsulation and imminent projections in the shifting paradigm from conventional process to environmentally friendly green process technologies and the sensitivity of methods used for encapsulation. Vegetable proteins are easily biodegradable and so are the procedures of spray drying and coacervation, which have been discussed to prepare the desired encapsulated functional food. Coacervation processes are yet more promising in the case of particle size formation ranging from nano to several hundred microns. The present review emphasizes the significance of using vegetable proteins as capsule material, as well as the specificity of encapsulation methods in relation to vegetable protein sensitivity and the purpose of encapsulation accompanying recent interventions.