Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 108: 106113, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32278501

RESUMEN

A novel experimental technique based on point contact and Coulomb coupling is devised and optimized for ultrasonic imaging of bulk and guided waves propagation in piezo-ceramics. The Coulomb coupling technique exploits the coupling and transfer of electric field to mechanical vibrations by excitation of phonons. The point contact excitation and detection technique facilitates the spatial-temporal imaging of ultrasonic waves. The motivation of this research is the diagnosis and localization of surface cracks in the piezoelectric sensors and actuators. The underlying principle of the detection scheme is that any discontinuity on the surface causes high localization of electric gradient. The localized electric field at the defect boundaries enables then to behave as secondary passive ultrasonic sources resulting in strong back reflections. However, due to the interference between transmitted and reflected wave components from rigid boundaries and defect, the resolution on the localization of the damage is challenging. Therefore, an algorithm based on the two-dimensional spectral decomposition is utilized for selective suppression of the transmitted wave. The algorithm includes data transformation and vectorization in polar coordinates for efficient spectral decomposition. In the spectral domain, the complex wave component (phase and amplitude) are suppressed for the transmitted wave field. The reflected wave component in the spectral domain is retained and retrieved back using inverse spectral transformation. The algorithm is successful in retaining and exemplifying only the reflected wave sources arising from the strong scattering of ultrasonic waves from the surface and sub-surface defects. In summary, a novel experimental technique based on Coulomb coupling and spectral decomposition technique has been implemented for localization of surface defect in piezo-ceramic structures.

2.
J Colloid Interface Sci ; 522: 111-119, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29579562

RESUMEN

Present work demonstrates enhanced supercapacitive performance of CoO-rGO electrode using redox electrolyte. The long range electrostatic force developed during deposition of CoO-rGO composite thin film orient the molecules into the hexagonal crystal structure. The incorporated CoO particles into rGO nano-sheets make the structure more porous for the intercalation of the electrolyte ions through the electrode material. Additionally, 0.025 M K3[Fe(CN)6] + 0.025 M K4[Fe(CN)6] redox couple into KOH electrolyte enhances the supercapacitive performance than bare KOH electrolyte. The maximum specific capacitance of 1005 F g-1 is observed due to the combined effect of K3[Fe(CN)6] and K4[Fe(CN)6] redox couple into KOH electrolyte. Also, energy density of 86.74 Wh kg-1 at power density of 3.54 kW kg-1 suggest potential application of CoO-rGO composite thin film in the development of high energy density supercapacitor based on redox active electrolyte.

3.
J Colloid Interface Sci ; 496: 1-7, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28209539

RESUMEN

Low temperature soft chemical synthesis approach is employed towards MoS2 thin film preparation on cost effective stainless steel substrate. 3-D semispherical nano-grain composed surface texture of MoS2 film is observed through FE-SEM technique. Electrochemical supercapacitor performance of MoS2 film is tested from cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques in 1M aqueous Na2SO4 electrolyte. Specific capacitance (Cs) of 180Fg-1 with CV cycling stability of 82% for 1000 cycles is achieved. Equivalent series resistance (Rs) of 1.78Ωcm-2 observed through Nyquist plot shows usefulness of MoS2 thin film for charge conduction in supercapacitor application.

4.
Transl Oncol ; 7(6): 681-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25500076

RESUMEN

Determination of tumor volume in subcutaneously inoculated xenograft models is a standard procedure for clinical and preclinical evaluation of tumor response to treatment. Practitioners frequently use a hands-on caliper method in conjunction with a simplified formula to assess tumor volume. Non-invasive and more precise techniques as investigation by MR or (µ)CT exist but come with various adverse effects in terms of radiation, complex setup or elevated cost of investigations. Therefore, we propose an advanced three-dimensional sonographic imaging technique to determine small tumor volumes in xenografts with high precision and minimized observer variability. We present a study on xenograft carcinoma tumors from which volumes and shapes were calculated with the standard caliper method as well as with a clinically available three-dimensional ultrasound scanner and subsequent processing software. Statistical analysis reveals the suitability of this non-invasive approach for the purpose of a quick and precise calculation of tumor volume in small rodents.

5.
Eur J Vasc Endovasc Surg ; 45(4): 315-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403222

RESUMEN

OBJECTIVES: Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. MATERIALS AND METHODS: Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. RESULTS: Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. CONCLUSION: Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Rotura de la Aorta/etiología , Hemodinámica , Imagenología Tridimensional , Ultrasonografía Intervencional , Anciano , Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/complicaciones , Aneurisma de la Aorta Abdominal/fisiopatología , Rotura de la Aorta/fisiopatología , Presión Arterial , Fenómenos Biomecánicos , Humanos , Interpretación de Imagen Asistida por Computador , Modelos Lineales , Masculino , Fantasmas de Imagen , Fotogrametría , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Siliconas , Estrés Mecánico , Ultrasonografía Intervencional/instrumentación , Grabación en Video
6.
Ultrasonics ; 52(8): 989-95, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22989949

RESUMEN

Lead Zirconate Titanate (PZT) is a piezo-electric ceramic material that needs to be characterized for its potential use in microelectronics. Energy dispersive X-ray analysis (EDX) is conducted to determine the chemical composition of the PZT ceramics. The scanning electron microscope (SEM) is performed to study the surface morphology, grain structure and grain boundaries. The SEM image helps us to understand the surface wave propagation and scattering phenomena by the PZT and the reason for its anisotropy and inhomogeneity due to the grain structure. In this paper scanning acoustic microscopy at 100 MHz excitation frequency is conducted for determining mechanical properties of PZT. Earlier works reported only the longitudinal wave speed in PZT while in this paper longitudinal, shear and surface acoustic wave speeds of sintered PZT are measured from its acoustic material signature (AMS) curves, also known as V(z) curves. AMS or V(z) curve is the variation of the output voltage as a function of the distance between the acoustic lens focal point and the reflecting surface. The average velocities of longitudinal, shear and surface acoustic waves in a PZT specimen are determined from its V(z) curve generated at 100 MHz excitation frequency and found to be over 5000 m/s, over 3000 m/s and between 2500 and 3000 m/s, respectively. From these velocities all elastic constants of the specimen are obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...