Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 8(4): 581-595, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36747116

RESUMEN

Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.


Asunto(s)
Bacterias , Agua de Mar , Bacterias/genética , Agua de Mar/microbiología , Hidrógeno , Oxidación-Reducción , Océanos y Mares
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732568

RESUMEN

Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.


Asunto(s)
Clima Desértico , Gases/metabolismo , Cubierta de Hielo/microbiología , Microbiota , Microbiología del Suelo , Regiones Antárticas , Procesos Autotróficos , Biodiversidad , Hidrogenasas/metabolismo , Metagenoma , Oxidación-Reducción , Procesos Fototróficos
3.
Sci Total Environ ; 790: 147749, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34091344

RESUMEN

The permeable (sandy) sediments that dominate the world's coastlines and continental shelves are highly exposed to nitrogen pollution, predominantly due to increased urbanisation and inefficient agricultural practices. This leads to eutrophication, accumulation of drift algae and changes in the reactions of nitrogen, including the potential to produce the greenhouse gas nitrous oxide (N2O). Nitrogen pollution in coastal systems has been identified as a global environmental issue, but it remains unclear how this nitrogen is stored and processed by permeable sediments. We investigated the interaction of drift algae biomass and nitrate (NO3-) exposure on nitrogen cycling in permeable sediments that were impacted by high nitrogen loading. We treated permeable sediments with increasing quantities of added macroalgal material and NO3- and measured denitrification, dissimilatory NO3- reduction to ammonium (DNRA), anammox, and nitrous oxide (N2O) production, alongside abundance of marker genes for nitrogen cycling and microbial community composition by metagenomics. We found that the presence of macroalgae dramatically increased DNRA and N2O production in sediments without NO3- treatment, concomitant with increased abundance of nitrate-ammonifying bacteria (e.g. Shewanella and Arcobacter). Following NO3- treatment, DNRA and N2O production dropped substantially while denitrification increased. This is explained by a shift in the relative abundance of nitrogen-cycling microorganisms under different NO3- exposure scenarios. Decreases in both DNRA and N2O production coincided with increases in the marker genes for each step of the denitrification pathway (narG, nirS, norB, nosZ) and a decrease in the DNRA marker gene nrfA. These shifts were accompanied by an increased abundance of facultative denitrifying lineages (e.g. Pseudomonas and Marinobacter) with NO3- treatment. These findings identify new feedbacks between eutrophication and greenhouse gas emissions, and in turn have potential to inform biogeochemical models and mitigation strategies for marine eutrophication.


Asunto(s)
Desnitrificación , Nitratos , Nitrógeno , Ciclo del Nitrógeno , Óxido Nitroso
4.
ISME J ; 15(10): 2986-3004, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33941890

RESUMEN

Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.


Asunto(s)
Ecosistema , Microbiota , Bacterias/genética , Sedimentos Geológicos , Metagenómica , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA