Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2271, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755116

RESUMEN

The human skin barrier, a biological imperative, is impaired in inflammatory skin diseases such as atopic dermatitis (AD). Staphylococcus aureus is associated with AD lesions and contributes to pathological inflammation and further barrier impairment. S. aureus secretes extracellular proteases, such as V8 (or 'SspA'), which cleave extracellular proteins to reduce skin barrier. Previous studies demonstrated that the host defence peptide human beta-defensin 2 (HBD2) prevented V8-mediated damage. Here, the mechanism of HBD2-mediated barrier protection in vitro is examined. Application of exogenous HBD2 provided protection against V8, irrespective of timeline of application or native peptide folding, raising the prospect of simple peptide analogues as therapeutics. HBD2 treatment, in context of V8-mediated damage, modulated the proteomic/secretomic profiles of HaCaT cells, altering levels of specific extracellular matrix proteins, potentially recovering V8 damage. However, HBD2 alone did not substantially modulate cellular proteomic/secretomics profiles in the absence of damage, suggesting possible therapeutic targeting of lesion damage sites only. HBD2 did not show any direct protease inhibition or induce expression of known antiproteases, did not alter keratinocyte migration or proliferation, or form protective nanonet structures. These data validate the barrier-protective properties of HBD2 in vitro and establish key protein datasets for further targeted mechanistic analyses.


Asunto(s)
Dermatitis Atópica , beta-Defensinas , Humanos , beta-Defensinas/farmacología , beta-Defensinas/metabolismo , Staphylococcus aureus/metabolismo , Proteómica , Piel/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Proteínas
2.
PLoS Pathog ; 17(6): e1008937, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061908

RESUMEN

Favipiravir is a nucleoside analogue which has been licensed to treat influenza in the event of a new pandemic. We previously described a favipiravir resistant influenza A virus generated by in vitro passage in presence of drug with two mutations: K229R in PB1, which conferred resistance at a cost to polymerase activity, and P653L in PA, which compensated for the cost of polymerase activity. However, the clinical relevance of these mutations is unclear as the mutations have not been found in natural isolates and it is unknown whether viruses harbouring these mutations would replicate or transmit in vivo. Here, we infected ferrets with a mix of wild type p(H1N1) 2009 and corresponding favipiravir-resistant virus and tested for replication and transmission in the absence of drug. Favipiravir-resistant virus successfully infected ferrets and was transmitted by both contact transmission and respiratory droplet routes. However, sequencing revealed the mutation that conferred resistance, K229R, decreased in frequency over time within ferrets. Modelling revealed that due to a fitness advantage for the PA P653L mutant, reassortment with the wild-type virus to gain wild-type PB1 segment in vivo resulted in the loss of the PB1 resistance mutation K229R. We demonstrated that this fitness advantage of PA P653L in the background of our starting virus A/England/195/2009 was due to a maladapted PA in first wave isolates from the 2009 pandemic. We show there is no fitness advantage of P653L in more recent pH1N1 influenza A viruses. Therefore, whilst favipiravir-resistant virus can transmit in vivo, the likelihood that the resistance mutation is retained in the absence of drug pressure may vary depending on the genetic background of the starting viral strain.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Farmacorresistencia Viral/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/transmisión , Pirazinas/farmacología , Animales , Farmacorresistencia Viral/efectos de los fármacos , Hurones , Humanos , Gripe Humana/virología
3.
Front Immunol ; 11: 1176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595643

RESUMEN

Defensins are short, rapidly evolving, cationic antimicrobial host defence peptides with a repertoire of functions, still incompletely realised, that extends beyond direct microbial killing. They are released or secreted at epithelial surfaces, and in some cases, from immune cells in response to infection and inflammation. Defensins have been described as endogenous alarmins, alerting the body to danger and responding to inflammatory signals by promoting both local innate and adaptive systemic immune responses. However, there is now increasing evidence that they exert variable control on the response to danger; creating a dichotomous response that can suppress inflammation in some circumstances but exacerbate the response to danger and damage in others and, at higher levels, lead to a cytotoxic effect. Focussing in this review on human ß-defensins, we discuss the evidence for their functions as proinflammatory, immune activators amplifying the response to infection or damage signals and/or as mediators of resolution of damage, contributing to a return to homeostasis. Finally, we consider their involvement in the development of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Inflamación/inmunología , beta-Defensinas/inmunología , Humanos
4.
mBio ; 9(3)2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946048

RESUMEN

Emergency granulopoiesis is a hematopoietic program of stem cell-driven neutrophil production used to counteract immune cell exhaustion following infection. Shigella flexneri is a Gram-negative enteroinvasive pathogen controlled by neutrophils. In this study, we use a Shigella-zebrafish (Danio rerio) infection model to investigate emergency granulopoiesis in vivo We show that stem cell-driven neutrophil production occurs in response to Shigella infection and requires macrophage-independent signaling by granulocyte colony-stimulating factor (Gcsf). To test whether emergency granulopoiesis can function beyond homoeostasis to enhance innate immunity, we developed a reinfection assay using zebrafish larvae that have not yet developed an adaptive immune system. Strikingly, larvae primed with a sublethal dose of Shigella are protected against a secondary lethal dose of Shigella in a type III secretion system (T3SS)-dependent manner. Collectively, these results highlight a new role for emergency granulopoiesis in boosting host defense and demonstrate that zebrafish larvae can be a valuable in vivo model to investigate innate immune memory.IMPORTANCEShigella is an important human pathogen of the gut. Emergency granulopoiesis is the enhanced production of neutrophils by hematopoietic stem and progenitor cells (HSPCs) upon infection and is widely considered a homoeostatic mechanism for replacing exhausted leukocytes. In this study, we developed a Shigella-zebrafish infection model to investigate stem cell-driven emergency granulopoiesis. We discovered that zebrafish initiate granulopoiesis in response to Shigella infection, via macrophage-independent signaling of granulocyte colony-stimulating factor (Gcsf). Strikingly, larvae primed with a sublethal dose of Shigella are protected against a secondary lethal dose of Shigella in a type III secretion system (T3SS)-dependent manner. Taken together, we show that zebrafish infection can be used to capture Shigella-mediated stem cell-driven granulopoiesis and provide a new model system to study stem cell biology in vivo Our results also highlight the potential of manipulating stem cell-driven granulopoiesis to boost innate immunity and combat infectious disease.


Asunto(s)
Coinfección/inmunología , Modelos Animales de Enfermedad , Disentería Bacilar/microbiología , Leucopoyesis , Neutrófilos/inmunología , Shigella flexneri/fisiología , Animales , Coinfección/microbiología , Coinfección/fisiopatología , Disentería Bacilar/inmunología , Disentería Bacilar/fisiopatología , Femenino , Humanos , Larva/inmunología , Larva/microbiología , Macrófagos/inmunología , Masculino , Neutrófilos/citología , Pez Cebra/inmunología , Pez Cebra/microbiología
5.
J Comp Neurol ; 505(2): 177-89, 2007 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17853452

RESUMEN

The aim of this study was to characterize and classify the displaced amacrine cells in the mouse retina. Amacrine cells in the ganglion cell layer were injected with fluorescent dyes in flat-mounted retinas. Dye-filled displaced amacrine cells were classified according to dendritic field size, horizontal and vertical stratification patterns, and general morphology. We identified 10 different morphological types of displaced amacrine cell. Six of the cell types identified here are novel cell types that have not been described previously in the mouse retina, to the best of our knowledge. The displaced amacrine cells included four types of medium-field cells, with dendritic field diameters of 200-500 microm, and six types of wide-field cells, with dendritic fields extending over 500 microm. Narrow-field displaced amacrine cells, with dendritic field diameters smaller than 200 microm, were not encountered. The most frequently labeled displaced amacrine cell type was the starburst amacrine cell. At least three cell types identified here have nondisplaced counterparts in the inner nuclear layer as well. Displaced amacrine cells display a rich variety of stratification and branching patterns, which surely reflect the wide range of their functional roles in the processing of visual signals in the inner retina.


Asunto(s)
Células Amacrinas/metabolismo , Retina/citología , Células Amacrinas/citología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Tamaño de la Célula , Colina O-Acetiltransferasa/metabolismo , Dendritas/metabolismo , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
6.
Eur J Neurosci ; 23(12): 3176-86, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16820008

RESUMEN

Horizontal cells are coupled by gap junctions; the extensive coupling of the horizontal cells is reflected in their large receptive fields, which extend far beyond the dendritic arbor of the individual cell. In the mouse retina, horizontal cells express connexin57 (Cx57). Tracer coupling of horizontal cells is impaired in Cx57-deficient mice, which suggests that the receptive fields of Cx57-deficient horizontal cells might be similarly reduced. To test this hypothesis we measured the receptive fields of horizontal cells from wildtype and Cx57-deficient mice. First, we examined the synaptic connections between horizontal cells and photoreceptors: no major morphological alterations were found. Moreover, horizontal cell spacing and dendritic field size were unaffected by Cx57 deletion. We used intracellular recordings to characterize horizontal cell receptive fields. Length constants were computed for each cell using the cell's responses to concentric light spots of increasing diameter. The length constant was dependent on the intensity of the stimulus: increasing stimulus intensity reduced the length constant. Deletion of Cx57 significantly reduced horizontal cell receptive field size. Dark resting potentials were strongly depolarized and response amplitudes reduced in Cx57-deficient horizontal cells compared to the wildtype, suggesting an altered input resistance. This was confirmed by patch-clamp recordings from dissociated horizontal cells; mean input resistance of Cx57-deficient horizontal cells was 27% lower than that of wildtype cells. These data thus provide the first quantification of mouse horizontal cell receptive field size and confirm the unique role of Cx57 in horizontal cell coupling and physiology.


Asunto(s)
Conexinas/metabolismo , Células Horizontales de la Retina/metabolismo , Campos Visuales/fisiología , Animales , Forma de la Célula , Conexinas/genética , Dopamina/metabolismo , Electrofisiología , Luz , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Células Horizontales de la Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...