Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Rheum Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38724075

RESUMEN

OBJECTIVE: Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS: FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS: We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION: Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.

2.
Int Immunopharmacol ; 128: 111433, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181676

RESUMEN

OBJECTIVE: Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS: FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS: Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.


Asunto(s)
Artritis Reumatoide , Berberina/análogos & derivados , Sinoviocitos , Humanos , Ratones , Animales , Agresión , Movimiento Celular , Artritis Reumatoide/tratamiento farmacológico , Membrana Sinovial/patología , Proliferación Celular , Fibroblastos , Células Cultivadas
3.
Arthritis Rheumatol ; 76(2): 192-205, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37584615

RESUMEN

OBJECTIVE: Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N6 -methyladenosine (m6 A) modification plays key roles in various diseases, but its role in the pathogenesis of RA is largely unknown. Here, we investigate increased demethylase ALKBH5 promotion of proliferation, migration, and invasion of RA FLSs via regulating JARID2 expression. METHODS: ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m6 A sequencing combined with RNA sequencing was performed to identify the potential targets of ALKBH5. RNA immunoprecipitation and RNA pulldown were then used to validate the interaction between the protein and messenger RNA (mRNA). Collagen-induced arthritis (CIA) and delayed-type hypersensitivity arthritis (DTHA) models were further established to assess the therapeutic potency of ALKBH5 in vivo. RESULTS: We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m6 A modification in the JARID2 mRNA and enhanced its mRNA stability in cooperation with IGF2BP3. Intriguingly, the severity of arthritis was attenuated in mice with DTHA and ALKBH5 knockout or rats with CIA and intra-articular injection of ALKBH5 short hairpin RNA. CONCLUSION: Our findings suggest that ALKBH5-mediated m6 A modification is crucial for synovial hyperplasia and invasion in RA. ALKBH5 might be a potential therapeutic target for RA and even for dysregulated fibroblasts in a wide range of diseases.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Animales , Ratones , Ratas , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Movimiento Celular , Proliferación Celular/genética , Células Cultivadas , Fibroblastos/metabolismo , Metilación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sinoviocitos/metabolismo
4.
Int Immunopharmacol ; 124(Pt A): 110803, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625367

RESUMEN

OBJECTIVE: Dermatomyositis (DM) is the best known subtype of idiopathic inflammatory myopathies. The hallmarks of DM muscle pathology including microangiopathy, inflammatory infiltration, and perifascicular atrophy. Recent findings have revealed pathogenetic effects of myeloperoxidase (MPO) by causing oxidative damage and regulating abnormal immunity in multiple disease conditions. In this study, we aimed to explore the role of MPO in the pathogenesis of DM. METHODS: The peripheral blood mononuclear cell (PBMC) mRNA expression and DNA methylation of MPO were verified using real-time qPCR and bisulfite pyrosequencing, respectively. Plasma MPO levels were measured with enzyme-linked immunosorbent assay, and their relationships with clinical characteristics were analyzed. The expression and distribution of MPO in muscle were tested by immunofluorescence. Purified human native MPO protein was used to stimulate human dermal microvascular endothelial cells (HDMECs) and skeletal muscle myotubes. The cell viability, tube forming capacity, permeability, adhesion molecule expressions in HDMECs, and atrophy and programmed cell death pathways in myotubes were then observed. RESULTS: MPO gene methylation was decreased, while mRNA expression and plasma levels were increased in DM. Plasma MPO of DM patients was positively correlated with serum creatine kinase (CK). MPO mainly distributed around endomysia capillaries and perifascicular atrophy in DM muscle biopsies, and was co-localized with CD4+, CD8+ T cells and CD19+ B cells. MPO not only could influence the cell viability, tube forming capacity, permeability and expression of adhesion molecules (including ICAM 1, VCAM 1 and E-selectin) of HDMECs, but also could cause atrophy of myotubes. CONCLUSIONS: Our study disclosed, for the first time, that MPO plays an important role in promoting inflammatory infiltration and inducing muscle damage in DM patients. MPO may be a potential biomarker for DM muscle involvement and MPO targeted drugs may be promising in DM treatment.

5.
Int Immunopharmacol ; 122: 110502, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390648

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease causing joint dysfunction. As disease-modifying anti-rheumatic drugs (DMARDs) have poor efficacy in 20% to 25% of RA patients, additional novel RA medications are urgently needed. Schisandrin (SCH) has multiple therapeutic effects. However, whether SCH is effective against RA remains unknown. PURPOSE: To investigate how SCH affects the abnormal behaviours of RA fibroblast-like synoviocytes (FLSs) and further elucidate the underlying mechanism of SCH in RA FLSs and collagen-induced arthritis (CIA) mice. METHODS: Cell Counting Kit-8 (CCK8) assays were used to characterize cell viability. EdU assays were performed to assess cell proliferation. Annexin V-APC/PI assays were used to determine apoptosis. Transwell chamber assays were used to measure cell migration and invasion in vitro. RT-qPCR was used to assess proinflammatory cytokine and MMP mRNA expression. Western blotting was used to detect protein expression. RNA sequencing was performed to explore the potential downstream targets of SCH. CIA model mice were used to assess the treatment efficacy of SCH in vivo. RESULTS: Treatments with SCH (50, 100, and 200 µΜ) inhibited RA FLSs proliferation, migration, invasion, and TNF-α-induced IL-6, IL-8, and CCL2 expression in a dose-dependent manner but did not affect RA FLSs viability or apoptosis. RNA sequencing and Reactome enrichment analysis indicated that SREBF1 might be the downstream target in SCH treatment. Furthermore, knockdown of SREBF1 exerted effects similar to those of SCH in inhibiting RA FLSs proliferation, migration, invasion, and TNF-α-induced expression of IL-6, IL-8, and CCL2. Both SCH treatment and SREBF1 knockdown decreased activation of the PI3K/AKT and NF-κB signalling pathways. Moreover, SCH ameliorated joint inflammation and cartilage and bone destruction in CIA model mice. CONCLUSION: SCH controls the pathogenic behaviours of RA FLSs by targeting SREBF1-mediated activation of the PI3K/AKT and NF-κB signalling pathways. Our data suggest that SCH inhibits FLS-mediated synovial inflammation and joint damage and that SCH might have therapeutic potential for RA.


Asunto(s)
Antirreumáticos , Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Animales , Ratones , Artritis Experimental/patología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Artritis Reumatoide/metabolismo , Inflamación/metabolismo , Movimiento Celular , Antirreumáticos/uso terapéutico , Fibroblastos , Proliferación Celular , Células Cultivadas
6.
Cell Death Dis ; 13(12): 1035, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513634

RESUMEN

Fibroblast-like synoviocytes (FLSs), play a key role in perpetuating synovial inflammation and bone erosion in rheumatoid arthritis (RA), however, the underlying mechanism(s) of RA FLSs activation and aggression remain unclear. Identifying endogenous proteins that selectively target FLSs is urgently needed. Here, we systematically identified that secreted modular calcium-binding protein 2 (SMOC2), was significantly increased in RA FLSs and synovial tissues. SMOC2 knockdown specifically regulated cytoskeleton remodeling and decreased the migration and invasion of RA FLSs. Mechanistically, cytoskeleton-related genes were significantly downregulated in RA FLSs with reduced SMOC2 expression, especially the motor protein myosin1c (MYO1C). SMOC2 controlled MYO1C expression by SRY-related high-mobility group box 4 (SOX4) and AlkB homolog 5 (ALKHB5) mediated-m6A modification through transcriptional and post-transcriptional regulation. Furthermore, intra-articular Ad-shRNA-SMOC2 treatment attenuated synovial inflammation as well as bone and cartilage erosion in rats with collagen-induced arthritis (CIA). Our findings suggest that increased SMOC2 expression in FLSs may contribute to synovial aggression and joint destruction in RA. SMOC2 may serve as a potential target against RA. SMOC2-mediated regulation of the synovial migration and invasion in RA FLSs. In RA FLSs, SMOC2 is significantly increased, leading to the increased level of MYO1C via SOX4-mediated transcriptional regulation and ALKBH5-mediated m6A modification, thereby causing cytoskeleton remodeling and promoting RA FLSs migration and invasion. The Figure was drawn by Figdraw.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Ratas , Animales , Sinoviocitos/metabolismo , Células Cultivadas , Transducción de Señal/genética , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Movimiento Celular/genética , Inflamación/metabolismo , Agresión , Proliferación Celular/genética
7.
Front Pharmacol ; 13: 905376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120327

RESUMEN

Objective: To explore the effect and underlying mechanism of Myricitrin (Myr) in regulating fibroblast-like synoviocyte (FLS)-mediated synovitis and joint destruction in RA. Methods: FLSs were isolated from synovial tissues from patients with RA. Gene expression was measured using quantitative RT-qPCR. Protein expression was detected by immunohistochemistry or Western blot. Cell apoptosis was performed by an Annexin-PI staining assay. EdU incorporation was used to assess the proliferation of RA FLS. Transwell assay was used to characterize the cell migration and invasion ability of RA FLS. The potential target of Myr was identified by RNA sequencing analysis. The in vivo effect of Myr was assessed in a collagen-induced arthritis (CIA) model. Results: Myr treatment inhibited the lamellipodia formation, migration, and invasion, but not the apoptosis and proliferation, of RA FLSs. Myr also reduced the expression of CCL2, IL-6, IL-8, MMP-1, MMP-3, and MMP-13 induced by TNF-α. The RNA-seq results indicated that AIM2 may be a target gene of Myr in RA FLSs. Furthermore, compared to healthy controls, AIM2 expression showed higher levels in synovial tissues and FLSs from RA patients. AIM2 knockdown also inhibited RA FLS migration, invasion, cytokine, and MMP expression. In addition, either Myr treatment or AIM2 knockdown reduced the phosphorylation of AKT induced by TNF-α stimulation. Importantly, Myr administration relieved arthritis symptoms and inhibited AIM2 expression in the synovium of CIA mice. Conclusion: Our results indicate that Myr exerts an anti-inflammatory and anti-invasion effect in RA FLSs and provide evidence of the therapeutic potential of Myr for RA.

8.
Front Endocrinol (Lausanne) ; 13: 884302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784563

RESUMEN

Purpose: The association between primary aldosteronism (PA) and lower bone mineral density (BMD) has raised a concern, but the contributing factors remain unclear. We aim to explore the risk factors for lower BMD in PA patients. Methods: We analyzed and compared the data of 60 PA patients with 60 matched essential hypertension (EH) patients. BMD, bone metabolites, and several oxidative stress and inflammation indicators-including C-reactive protein (CRP), superoxide dismutase (SOD), total bilirubin (TBIL), mean platelet volume (MPV), etc.-were assessed and compared in PA and EH patients. Bivariate correlation analysis and multivariate linear regression analysis were performed to explore the factors associated with BMD in PA patients. Results: The BMD measured by quantitative computed tomography in PA patients was lower than that in EH patients (141.9 ± 34.0 vs. 158.9 ± 55.9 g/cm3, p = 0.047), especially in patients less than 50 years old. BMD was independently negatively associated with age (standardized ß = -0.581, p < 0.001), serum phosphorus (standardized ß = -0.203, p = 0.008), urinary calcium excretion (standardized ß = -0.185, p = 0.031), and MPV (standardized ß = -0.172, p = 0.043) and positively associated with SOD (standardized ß = 0.205, p = 0.011) and TBIL (standardized ß = 0.212, p = 0.015). Conclusions: The PA patients showed a lower BMD than the EH patients, which was associated with age, serum phosphorus, urinary calcium excretion, MPV, SOD, and TBIL. These variables might be potential markers for the assessment of bone loss and efficacy of treatments in PA patients.


Asunto(s)
Enfermedades Óseas Metabólicas , Hiperaldosteronismo , Densidad Ósea , Calcio , Hipertensión Esencial , Humanos , Hiperaldosteronismo/complicaciones , Fósforo , Factores de Riesgo , Superóxido Dismutasa
9.
Ann Transl Med ; 10(8): 431, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571412

RESUMEN

Background: Fibroblast-like synoviocytes (FLSs) play a critical role in promoting synovial aggression and joint destruction in rheumatoid arthritis (RA). Cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling plays an important role in controlling a series of cellular biological processes. However, it is still unclear whether cGAS/STING signaling regulates rheumatoid synovial aggression. Methods: Cell migration and invasion were detected using a Transwell chamber. Gene expression was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and protein expression was detected by western blotting. Reactive oxygen species (ROS) levels were measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. F-actin staining and immunofluorescence assays were used to investigate lamellipodia formation and nuclear translocation, respectively. A severe combined immunodeficiency (SCID) mouse model was established to observe the migration and invasion of RA FLSs in vivo. Results: Our results showed that cytosolic double-stranded DNA (dsDNA)-induced cGAS/STING activation promoted the in vitro migration and invasion of RA FLSs. Moreover, RA FLSs treated with cGAS or STING short hairpin RNA (shRNA) exhibited reduced invasion into cartilage in the SCID model. Mechanistically, we determined that cGAS/STING activation leads to increased mitochondrial ROS levels, and thereby increases phosphorylation of mammalian sterile 20-like kinase 1 (MST1), a core component of the Hippo pathway, subsequently promoting activation of forkhead box1 (FOXO1). MST1 and FOXO1 knockdown also diminished the migration and invasion of RA FLSs. Conclusions: Our findings suggest that cGAS/STING signaling has an important role in regulating rheumatoid synovial aggression and that targeting cGAS/STING may represent a novel potential therapy for RA.

10.
Front Immunol ; 13: 802499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237262

RESUMEN

BACKGROUND: Anti-TIF1γ antibodies are a class of myositis-specific antibodies (MSAs) and are closely associated with adult cancer-associated myositis (CAM). The heterogeneity in anti-TIF1γ+ myositis is poorly explored, and whether anti-TIF1γ+ patients will develop cancer or not is unknown at their first diagnosis. Here, we aimed to explore the subtypes of anti-TIF1γ+ myositis and construct machine learning classifiers to predict cancer in anti-TIF1γ+ patients based on clinical features. METHODS: A cohort of 87 anti-TIF1γ+ patients were enrolled and followed up in Xiangya Hospital from June 2017 to June 2021. Sankey diagrams indicating temporal relationships between anti-TIF1γ+ myositis and cancer were plotted. Elastic net and random forest were used to select and rank the most important variables. Multidimensional scaling (MDS) plot and hierarchical cluster analysis were performed to identify subtypes of anti-TIF1γ+ myositis. The clinical characteristics were compared among subtypes of anti-TIF1γ+ patients. Machine learning classifiers were constructed to predict cancer in anti-TIF1γ+ myositis, the accuracy of which was evaluated by receiver operating characteristic (ROC) curves. RESULTS: Forty-seven (54.0%) anti-TIF1γ+ patients had cancer, 78.7% of which were diagnosed within 0.5 years of the myositis diagnosis. Fourteen variables contributing most to distinguishing cancer and non-cancer were selected and used for the calculation of the similarities (proximities) of samples and the construction of machine learning classifiers. The top 10 were disease duration, percentage of lymphocytes (L%), percentage of neutrophils (N%), neutrophil-to-lymphocyte ratio (NLR), sex, C-reactive protein (CRP), shawl sign, arthritis/arthralgia, V-neck sign, and anti-PM-Scl75 antibodies. Anti-TIF1γ+ myositis patients can be clearly separated into three clinical subtypes, which correspond to patients with low, intermediate, and high cancer risk, respectively. Machine learning classifiers [random forest, support vector machines (SVM), extreme gradient boosting (XGBoost), elastic net, and decision tree] had good predictions for cancer in anti-TIF1γ+ myositis patients. In particular, the prediction accuracy of random forest was >90%, and decision tree highlighted disease duration, NLR, and CRP as critical clinical parameters for recognizing cancer patients. CONCLUSION: Anti-TIF1γ+ myositis can be separated into three distinct subtypes with low, intermediate, and high risk of cancer. Machine learning classifiers constructed with clinical characteristics have favorable performance in predicting cancer in anti-TIF1γ+ myositis, which can help physicians in choosing appropriate cancer screening programs.


Asunto(s)
Miositis , Neoplasias , Adulto , Algoritmos , Humanos , Estudios Longitudinales , Aprendizaje Automático , Miositis/diagnóstico , Neoplasias/complicaciones , Neoplasias/diagnóstico
11.
JCI Insight ; 6(23)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34877935

RESUMEN

Fibroblast-like synoviocytes (FLSs) play a key role in controlling synovial inflammation and joint destruction in rheumatoid arthritis (RA). The contribution of long noncoding RNAs (lncRNAs) to RA is largely unknown. Here, we show that the lncRNA LINK-A, located mainly in cytoplasm, has higher-than-normal expression in synovial tissues and FLSs from patients with RA. Synovial LINK-A expression was positively correlated with the severity of synovitis in patients with RA. LINK-A knockdown decreased migration, invasion, and expression and secretion of matrix metalloproteinases and proinflammatory cytokines in RA FLSs. Mechanistically, LINK-A controlled RA FLS inflammation and invasion through regulation of tyrosine protein kinase 6-mediated and leucine-rich repeat kinase 2-mediated HIF-1α. On the other hand, we also demonstrate that LINK-A could bind with microRNA 1262 as a sponge to control RA FLS aggression but not inflammation. Our findings suggest that increased level of LINK-A may contribute to FLS-mediated rheumatoid synovial inflammation and aggression. LINK-A might be a potential therapeutic target for RA.


Asunto(s)
Artritis Reumatoide/genética , Inflamación/genética , ARN Largo no Codificante/genética , Membrana Sinovial/metabolismo , Humanos , Transfección
12.
Ann Transl Med ; 9(17): 1368, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733920

RESUMEN

BACKGROUND: Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion. METHODS: Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array. RESULTS: A significant decrease in THRIL expression was found in RA FLSs compared with cells from healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite effect. THRIL knockdown increased interleukin-1ß (IL-1ß)-triggered expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression in response to stimulation with IL-1ß. Furthermore, we observed that the expression levels of cyclin-dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with cellular mobility and proliferation, were downregulated with THRIL overexpression. CONCLUSIONS: Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.

13.
Int Immunopharmacol ; 101(Pt A): 108273, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34700130

RESUMEN

OBJECTIVE: Nitidine chloride (NC), a natural small molecular compound from traditional Chinese herbal medicine zanthoxylum nitidum, has been shown to exhibit anti-tumor effect. However, its role in autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we investigate the effect of NC in controlling fibroblast-like synoviocytes (FLS)-mediated synovial inflammation and joint destruction in RA and further explore its underlying mechanism(s). METHODS: FLSs were separated from synovial tissues obtained from patients with RA. Protein expression was analyzed by Western blot or immunohistochemistry. Gene expression was measured using quantitative RT-PCR. ELISA was used to measure the levels of cytokines and MMPs. Cell proliferation was detected using EdU incorporation. Migration and invasion were evaluated by Boyden chamber assay. RNA sequencing analysis was used to identify the target of NC. Collagen-induced arthritis (CIA) model was used to evaluate the in vivo effect of NC. RESULTS: NC treatment reduced the proliferation, migration, invasion, and lamellipodia formation but not apoptosis of RA FLSs. We also demonstrated the inhibitory effect of NC on TNF-α-induced expression and secretion of IL-6, IL-8, CCL-2, MMP-1 and MMP-13. Furthermore, we identified KCNH1, a gene that encodes ether-à-go-go-1 channel, as a novel targeting gene of NC in RA FLSs. KCNH1 expression was increased in FLSs and synovial tissues from patients with RA compared to healthy controls. KCNH1 knockdown or NC treatment decreased the TNF-α-induced phosphorylation of AKT. Interestingly, NC treatment ameliorated the severity of arthritis and reduced synovial KCNH1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that NC treatment inhibits aggressive and inflammatory actions of RA FLSs by targeting KCNH1 and sequential inhibition of AKT phosphorylation. Our findings suggest that NC might control FLS-mediated rheumatoid synovial inflammation and joint destruction, and be a novel therapeutic agent for RA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Benzofenantridinas/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Membrana Sinovial/efectos de los fármacos , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Benzofenantridinas/uso terapéutico , Células Cultivadas , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Voluntarios Sanos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Cultivo Primario de Células , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Sinoviocitos/efectos de los fármacos , Sinoviocitos/inmunología
14.
Q J Nucl Med Mol Imaging ; 65(1): 72-78, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31140234

RESUMEN

BACKGROUND: The aim of this study is to determine the differential diagnostic value of texture parameters of PET/CT on renal cell carcinoma and renal lymphoma. METHODS: Twenty renal lymphoma and 18 renal cell carcinoma (RCC) patients were analyzed in this study. The pathological information and basic characteristics were extracted from the electronic medical record system of our hospital. We used LIFEx package to extract data from the radiomics images. Receiver operating characteristic analysis and binary logistic regression analysis was applied in determining the diagnostic accuracy of texture parameters as well as the synthetic parameter, of which the sensitivity and specificity was improved. RESULTS: There were 14 (two in Histogram, two in Grey Level Co-occurrence Matrix, five in Grey-Level Run Length Matrix, five in Grey-Level Zone Length Matrix) out of the texture parameters showing an area under the curve (AUC) >0.7 and P<0.05. Synthesized parameters of each section showed even higher differentiation ability, with AUC varying from 0.725 to 1.000. CONCLUSIONS: Texture analysis of 18F-FDG PET/CT could effectively differentiate between RCCs and renal lymphomas.


Asunto(s)
Carcinoma de Células Renales/diagnóstico por imagen , Fluorodesoxiglucosa F18/química , Linfoma/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Anciano , Carcinoma de Células Renales/clasificación , Diagnóstico Diferencial , Femenino , Humanos , Linfoma/clasificación , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Programas Informáticos
15.
Clin Rheumatol ; 39(10): 3071-3081, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32246239

RESUMEN

OBJECTIVES: To explore the clinical features and associated factors of cryptococcosis in patients with connective tissue disease (CTD) from Southern China. METHODS: Demographic and clinical data were collected between 2007 and 2018. Associated factors were analyzed by logistic regression analysis. RESULTS: A total of 6809 inpatients with CTD were included. Cryptococcosis was diagnosed in 30 patients (prevalence, 0.4%). Cryptococcosis was predominant in patients with ANCA-associated vasculitis (AAV) (prevalence, 6/530, 1.1%). Lung was commonly involved (18/30, 60.0%), followed by meninges (6/30, 20.0%), blood stream (5/30, 16.7%), and disseminated cryptococcosis (involved blood stream and meninges) (1/30, 3.3%). Infiltrates (10/18, 55.6%) and small nodules (8/18, 44.4%) were the main radiographic manifestation of pulmonary cryptococcosis (PC). The positive rate of serum cryptococcal antigen (CrAg) in patients with PC was 88.2%. Cryptococcus spp. were found in 75% (3/4) patients who underwent lung biopsy. Most of the patients with cryptococcal meningitis (CM) had elevated cerebrospinal fluid (CSF) opening pressure (6/7, 85.7%) and decreased CSF glucose level (5/7, 71.4%). Positive blood culture confirmed the diagnosis of cryptococcal sepsis (CS). Three patients died (10.0%), including one with CM and two with PC. Multivariate logistic regression analysis showed that accumulated dose of glucocorticoid (GC) [odds ratio (OR) = 1.42, 95% confidence interval (CI) 1.04-1.93, P = 0.03] was associated with cryptococcosis in patients with CTD. CONCLUSIONS: Cryptococcosis develops in various organs. Typical radiological manifestation accompanied with positive serum CrAg provides helpful clues for the diagnosis. Lumbar puncture is a critical diagnostic method to distinguish CM. The accumulated dose of GC is associated with cryptococcosis in patients with CTD. Key Points • Pulmonary cryptococcosis is suspected if pulmonary nodules adjacent to the pleura are present, with serum CrAg positive. • Cryptococcal meningitis has insidious onset and the diagnosis mainly depends on lumber puncture. • Cryptococcal sepsis is not rare and needs timely blood culture in suspected patients.


Asunto(s)
Enfermedades del Tejido Conjuntivo , Criptococosis , Antígenos Fúngicos , China/epidemiología , Criptococosis/complicaciones , Criptococosis/diagnóstico , Criptococosis/epidemiología , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...