Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Intervalo de año de publicación
1.
Cell Rep Med ; : 101694, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173634

RESUMEN

Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.

2.
Environ Pollut ; : 124776, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173867

RESUMEN

Acrolein is a widespread contaminant found in both diet and environment, entering the human body through food, alcohol, smoking, and exposure to fuel combustion fumes. While prior studies have highlighted acrolein's harmful impact on oocyte quality and early embryonic development in vitro, the specific mechanisms by which acrolein affects the female reproductive system in vivo remain poorly understood. This study first confirmed that in vitro acrolein exposure disrupts spindle morphology and chromosome alignment during the mid-MI stage of oocyte development, thus hindering oocyte maturation. Besides, exposure to acrolein not only stunts growth in mice but also impairs ovarian development, decreases the ovarian coefficient, disrupts follicular development, and increases the count of atretic follicles in vivo. Additional research has shown that acrolein exposure reduces the activity of key enzymes in glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle within the ovaries. It also suppresses mitochondrial complex expression and disturbs the balance between mitochondrial fission and fusion, as confirmed by metabolomic analyses. Moreover, acrolein exposure in vivo induced granulosa cell apoptosis and reduced oocyte number. In summary, acrolein exposure impairs glucose metabolism and induces mitochondrial dysfunction in the ovaries.

3.
BMC Cancer ; 24(1): 965, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107701

RESUMEN

PURPOSE: This study explores integrating clinical features with radiomic and dosiomic characteristics into AI models to enhance the prediction accuracy of radiation dermatitis (RD) in breast cancer patients undergoing volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS: This study involved a retrospective analysis of 120 breast cancer patients treated with VMAT at Kaohsiung Veterans General Hospital from 2018 to 2023. Patient data included CT images, radiation doses, Dose-Volume Histogram (DVH) data, and clinical information. Using a Treatment Planning System (TPS), we segmented CT images into Regions of Interest (ROIs) to extract radiomic and dosiomic features, focusing on intensity, shape, texture, and dose distribution characteristics. Features significantly associated with the development of RD were identified using ANOVA and LASSO regression (p-value < 0.05). These features were then employed to train and evaluate Logistic Regression (LR) and Random Forest (RF) models, using tenfold cross-validation to ensure robust assessment of model efficacy. RESULTS: In this study, 102 out of 120 VMAT-treated breast cancer patients were included in the detailed analysis. Thirty-two percent of these patients developed Grade 2+ RD. Age and BMI were identified as significant clinical predictors. Through feature selection, we narrowed down the vast pool of radiomic and dosiomic data to 689 features, distributed across 10 feature subsets for model construction. In the LR model, the J subset, comprising DVH, Radiomics, and Dosiomics features, demonstrated the highest predictive performance with an AUC of 0.82. The RF model showed that subset I, which includes clinical, radiomic, and dosiomic features, achieved the best predictive accuracy with an AUC of 0.83. These results emphasize that integrating radiomic and dosiomic features significantly enhances the prediction of Grade 2+ RD. CONCLUSION: Integrating clinical, radiomic, and dosiomic characteristics into AI models significantly improves the prediction of Grade 2+ RD risk in breast cancer patients post-VMAT. The RF model analysis demonstrates that a comprehensive feature set maximizes predictive efficacy, marking a promising step towards utilizing AI in radiation therapy risk assessment and enhancing patient care outcomes.


Asunto(s)
Neoplasias de la Mama , Radiodermatitis , Radioterapia de Intensidad Modulada , Humanos , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Radiodermatitis/etiología , Radiodermatitis/diagnóstico por imagen , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Anciano , Adulto , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Dosificación Radioterapéutica , Inteligencia Artificial , Radiómica
4.
Cell Commun Signal ; 22(1): 401, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148095

RESUMEN

TP53 mutation (TP53-mut) correlates with inferior survival in many cancers, whereas its prognostic role in diffuse large B-cell lymphoma (DLBCL) is still in controversy. Therefore, more precise risk stratification needs to be further explored for TP53-mut DLBCL patients. A set of 2637 DLBCL cases from multiple cohorts, was enrolled in our analysis. Among the 2637 DLBCL patients, 14.0% patients (370/2637) had TP53-mut. Since missense mutations account for the vast majority of TP53-mut DLBCL patients, and most non-missense mutations affect the function of the P53 protein, leading to worse survival rates, we distinguished patients with missense mutations. A TP53 missense mutation risk model was constructed based on a 150-combination machine learning computational framework, demonstrating excellent performance in predicting prognosis. Further analysis revealed that patients with high-risk missense mutations are significantly associated with early progression and exhibit dysregulation of multiple immune and metabolic pathways at the transcriptional level. Additionally, the high-risk group showed an absolutely suppressed immune microenvironment. To stratify the entire cohort of TP53-mut DLBCL, we combined clinical characteristics and ultimately constructed the TP53 Prognostic Index (TP53PI) model. In summary, we identified the truly high-risk TP53-mut DLBCL patients and explained this difference at the mutation and transcriptional levels.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteína p53 Supresora de Tumor , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Humanos , Proteína p53 Supresora de Tumor/genética , Pronóstico , Mutación Missense/genética , Mutación/genética , Microambiente Tumoral/genética , Masculino , Femenino , Factores de Riesgo , Persona de Mediana Edad
5.
Eur J Cancer ; 210: 114278, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151323

RESUMEN

BACKGROUND: Despite improvements in colorectal cancer (CRC) treatment, the prognosis for advanced CRC patients remains poor. Disruption of protein stability is one of the important factors in cancer development and progression. In this study, we aim to identify and analyze novel dysregulated proteins in CRC, assessing their significance and the mechanisms. METHODS: Using quantitative proteomics, expression pattern analysis, and gain-of-function/loss-of-function experiments, we identify novel functional protein dysregulated by ubiquitin-proteasome axis in CRC. Prognostic significance was evaluated in a training cohort of 546 patients and externally validated in 794 patients. Mechanistic insights are gained through molecular biology experiments, deubiquitinating enzymes (DUBs) expression library screening, and RNA sequencing. RESULTS: MAFF protein emerged as the top novel candidate substrate regulated by ubiquitin-proteasome in CRC. MAFF protein was preferentially downregulated in CRC compared to adjacent normal tissues. More importantly, multicenter cohort study identified reduced MAFF protein expression as an independent predictor of overall and disease-free survival in CRC patients. The in vitro and vivo assays showed that MAFF overexpression inhibited CRC growth, while its knockdown had the opposite effect. Intriguingly, we found the abnormal expression of MAFF protein was predominantly regulated via ubiquitination of MAFF, with K48-ubiquitin being dominant. BAP1 as a nuclear deubiquitinating enzyme (DUB), bound to and deubiquitinated MAFF, thereby stabilizing it. Such stabilization upregulated DUSP5 expression, resulting in the inhibition of ERK phosphorylation. CONCLUSIONS: This study describes a novel BAP1-MAFF signaling axis which is crucial for CRC growth, potentially serving as a therapeutic target and a promising prognostic biomarker for CRC.

6.
Pharmacol Res ; : 107346, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127263

RESUMEN

Synovitis is characterized by a distinct metabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in Crispr/Cas9 transgenic mice alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.

7.
Theranostics ; 14(11): 4198-4217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113809

RESUMEN

The utilization of extracellular vesicles (EVs) in wound healing has been well-documented. However, the direct administration of free EVs via subcutaneous injection at wound sites may result in the rapid dissipation of bioactive components and diminished therapeutic efficacy. Functionalized hydrogels provide effective protection, as well as ensure the sustained release and bioactivity of EVs during the wound healing process, making them an ideal candidate material for delivering EVs. In this review, we introduce the mechanisms by which EVs accelerate wound healing, and then elaborate on the construction strategies for engineered EVs. Subsequently, we discuss the synthesis strategies and application of hydrogels as delivery systems for the sustained release of EVs to enhance complicated wound healing. Furthermore, in the face of complicated wounds, functionalized hydrogels with specific wound microenvironment regulation capabilities, such as antimicrobial, anti-inflammatory, and immune regulation, used for loading engineered EVs, provide potential approaches to addressing these healing challenges. Ultimately, we deliberate on potential future trajectories and outlooks, offering a fresh viewpoint on the advancement of artificial intelligence (AI)-energized materials and 3D bio-printed multifunctional hydrogel-based engineered EVs delivery dressings for biomedical applications.


Asunto(s)
Vesículas Extracelulares , Hidrogeles , Cicatrización de Heridas , Vesículas Extracelulares/metabolismo , Hidrogeles/química , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos
8.
Front Cell Dev Biol ; 12: 1375354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100091

RESUMEN

Background: In some patients, persistent gastrointestinal symptoms like abdominal pain, nausea, and diarrhea occur as part of long COVID-19 syndrome following acute respiratory symptoms caused by SARS-CoV-2. However, the characteristics of immune cells in the gastrointestinal tract of COVID-19 patients and their association with these symptoms remain unclear. Methodology: Data were collected from 95 COVID-19 patients. Among this cohort, 11 patients who exhibited gastrointestinal symptoms and underwent gastroscopy were selected. Using imaging mass cytometry, the gastrointestinal tissues of these patients were thoroughly analyzed to identify immune cell subgroups and investigate their spatial distribution. Results: Significant acute inflammatory responses were found in the gastrointestinal tissues, particularly in the duodenum, of COVID-19 patients. These alterations included an increase in the levels of CD68+ macrophages and CD3+CD4+ T-cells, which was more pronounced in tissues with nucleocapsid protein (NP). The amount of CD68+ macrophages positively correlates with the number of CD3+CD4+ T-cells (R = 0.783, p < 0.001), additionally, spatial neighborhood analysis uncovered decreased interactions between CD68+ macrophages and multiple immune cells were noted in NP-positive tissues. Furthermore, weighted gene coexpression network analysis was employed to extract gene signatures related to clinical features and immune responses from the RNA-seq data derived from gastrointestinal tissues from COVID-19 patients, and we validated that the MEgreen module shown positive correlation with clinical parameter (i.e., Total bilirubin, ALT, AST) and macrophages (R = 0.84, p = 0.001), but negatively correlated with CD4+ T cells (R = -0.62, p = 0.004). By contrast, the MEblue module was inversely associated with macrophages and positively related with CD4+ T cells. Gene function enrichment analyses revealed that the MEgreen module is closely associated with biological processes such as immune response activation, signal transduction, and chemotaxis regulation, indicating its role in the gastrointestinal inflammatory response. Conclusion: The findings of this study highlight the role of specific immune cell groups in the gastrointestinal inflammatory response in COVID-19 patients. Gene coexpression network analysis further emphasized the importance of the gene modules in gastrointestinal immune responses, providing potential molecular targets for the treatment of COVID-19-related gastrointestinal symptoms.

9.
IEEE Trans Cybern ; PP2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093679

RESUMEN

A novel reinforcement learning-based predefined-time tracking control scheme with prescribed performance is presented in this article for nonlinear systems in the presence of external disturbances. First, by employing the backstepping strategy, an adaptive optimized controller is developed under the identifier-critic-actor framework. Therein, the unknown nonlinear dynamics and the system control behavior can be learned effectively through neural networks. Moreover, aiming at obtaining the preset tracking performance, the prescribed performance control is integrated with the predefined-time control. In contrast to previous studies, the proposed scheme can not only constrain the tracking error rapidly to a prearranged vicinity of origin, but also ensure that the upper bound of convergence time can be adjusted in advance via a separate control parameter. In terms of the predefined-time stability theory, the boundedness of all system states can be proven within a predefined time. Finally, the availability and improved performances of the proposed control scheme are demonstrated by a numerical example and a single-link manipulator example.

10.
Mater Today Bio ; 27: 101127, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38979128

RESUMEN

Osteoarthritis (OA) is a degenerative disease potentially exacerbated due to inflammation, cartilage degeneration, and increased friction. Both mesenchymal stem cells (MSCs) and pro-inflammatory macrophages play important roles in OA. A promising approach to treating OA is to modify multi-functional hydrogel microspheres to target the OA microenvironment and structure. Arginyl-glycyl-aspartic acid (RGD) is a peptide widely used in bioengineering owing to its cell adhesion properties, which can recruit BMSCs and macrophages. We developed TLC-R, a microsphere loaded with TGF-ß1-containing liposomes. The recruitment effect of TLC-R on macrophages and BMSCs was verified by in vitro experiments, along with its function of promoting chondrogenic differentiation of BMSCs. And we evaluated the effect of TLC-R in balancing OA metabolism in vitro and in vivo. When TLC-R was co-cultured with BMSCs and lipopolysaccharide (LPS)-treated macrophages, it showed the ability to recruit both cells in substantial numbers. As the microspheres degraded, TGF-ß1 and chondroitin sulfate (ChS) were released to promote chondrogenic differentiation of the recruited BMSCs, modulate chondrocyte metabolism and inhibit inflammation induced by the macrophages. Furthermore, in vivo analysis showed that TLC-R restored the narrowed space, reduced osteophyte volume, and improved cartilage metabolic homeostasis in OA rats. Altogether, TLC-R provides a comprehensive and novel solution for OA treatment by dual-modulating inflammatory and chondrocyte metabolism.

11.
NPJ Precis Oncol ; 8(1): 144, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014007

RESUMEN

Protein tyrosine phosphatase SHP2 activates RAS signaling, which is a novel target for colorectal cancer (CRC) therapy. However, SHP2 inhibitor monotherapy is ineffective for metastatic CRC and a combination therapy is required. In this study, we aimed to improve the antitumor efficacy of SHP2 inhibition and try to explore the resistance mechanism of SHP2 inhibitor. Results showed that WWP1 promoted the proliferation of CRC cells. Genetic or pharmacological inhibition of WWP1 enhanced the effect of SHP2 inhibitor in suppressing tumor growth in vitro and in vivo. WWP1 may mediate feedback reactivation of AKT signaling following SHP2 inhibition. Furthermore, nomogram models constructed with IHC expression of WWP1 and SHP2 greatly improved the accuracy of prognosis prediction for patients with CRC. Our findings indicate that WWP1 inhibitor I3C can synergize with SHP2 inhibitor and is expected to be a new strategy for clinical trials in treating advanced CRC patients.

12.
J Cell Mol Med ; 28(14): e18575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39048916

RESUMEN

In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.


Asunto(s)
Anexina A2 , Antígenos B7 , Regulación Neoplásica de la Expresión Génica , Glioma , Isoformas de Proteínas , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Antígenos B7/metabolismo , Antígenos B7/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Anexina A2/metabolismo , Anexina A2/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología
13.
J Transl Med ; 22(1): 682, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060930

RESUMEN

BACKGROUND: Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. METHODS: We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. RESULTS: BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO2. Additionally, BIC inhibited SiO2-mediated secretion of the inflammatory cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-ß1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. CONCLUSION: The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-ß1, and consequently inhibits FMT and EMT via TGF-ß1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.


Asunto(s)
Fibrosis Pulmonar , Transducción de Señal , Silicosis , Factor de Crecimiento Transformador beta1 , Animales , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Silicosis/complicaciones , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/complicaciones , Ratones , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Células 3T3 NIH , Ratas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamación/patología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Compuestos de Bifenilo
14.
BMC Womens Health ; 24(1): 407, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026333

RESUMEN

BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR) is essential for the metabolism of folic acid and homocysteine. The MTHFR C677T polymorphism is associated with several disorders. Our study aims to explore the geographical distributions of the MTHFR C677T polymorphism of women in China and how migration affected the polymorphism in Suzhou. METHODS: A total of 7188 women of reproductive age were recruited in Suzhou of the study. Subjects were classified according to their native places after data extraction. MTHFR C677T gene polymorphisms were detected by quantitative PCR with genomic DNA isolated from blood samples. RESULTS: The frequencies of the 677T allele and 677TT genotype were higher in northern China than that in southern China and decreased in geographical gradients from north to south. The frequencies were considerably higher in the migrant population than that in the indigenous population of Suzhou. The migrant population have gradually changed the prevalence in Suzhou. CONCLUSIONS: Our study suggested that the prevalence of MTHFR C677T polymorphisms among women varied across different geographical regions in Chinese Han populations. The 677T allele frequencies of the northern populations were significantly higher than those of the southern populations. The migrant population gradually changed the prevalence of the MTHFR C677T polymorphism in Suzhou.


Asunto(s)
Frecuencia de los Genes , Metilenotetrahidrofolato Reductasa (NADPH2) , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Alelos , China/epidemiología , Pueblos del Este de Asia/genética , Genotipo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Polimorfismo de Nucleótido Simple
15.
Antioxidants (Basel) ; 13(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39061872

RESUMEN

Pregabalin is a medication primarily used in the treatment of neuropathic pain and anxiety disorders, owing to its gabapentinoid properties. Pregabalin monotherapy faces limitations due to its variable efficacy and dose-dependent adverse reactions. In this study, we conducted a comprehensive investigation into the potentiation of pregabalin's analgesic effects by dexborneol, a neuroprotective bicyclic monoterpenoid compound. We performed animal experiments where pain models were induced using two methods: peripheral nerve injury, involving axotomy and ligation of the tibial and common peroneal nerves, and incisional pain through a longitudinal incision in the hind paw, while employing a multifaceted methodology that integrates behavioral pharmacology, molecular biology, neuromorphology, and lipidomics to delve into the mechanisms behind this potentiation. Dexborneol was found to enhance pregabalin's efficacy by promoting its transportation to the central nervous system, disrupting self-amplifying vicious cycles via the reduction of HMGB1 and ATP release, and exerting significant anti-oxidative effects through modulation of central lipid metabolism. This combination therapy not only boosted pregabalin's analgesic property but also notably decreased its side effects. Moreover, this therapeutic cocktail exceeded basic pain relief, effectively reducing neuroinflammation and glial cell activation-key factors contributing to persistent and chronic pain. This study paves the way for more tolerable and effective analgesic options, highlighting the potential of dexborneol as an adjuvant to pregabalin therapy.

16.
PLoS One ; 19(7): e0305481, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995913

RESUMEN

Urban road traffic is one of the primary sources of carbon emissions. Previous studies have demonstrated the close relationship between traffic flow characteristics and carbon emissions (CO2). However, the impact of dynamic traffic distribution on carbon emissions is rarely empirically studied on the network level. To fill this gap, this study proposes a dynamic network carbon emissions estimation method. The network-level traffic emissions are estimated by combining macroscopic emission models and recent advances in dynamic network traffic flow modeling, namely, Macroscopic Fundamental Diagram. The impact of traffic distribution and the penetration of battery electric vehicles on total network emissions are further investigated using the Monte Carlo method. The results indicate the substantial effect of network traffic distribution on carbon emissions. Using the urban expressway network in Ningbo as an example, in the scenario of 100% internal combustion engine vehicles, increasing the standard deviation of link-level traffic density from 0 to 15 veh/km-ln can result in an 8.9% network capacity drop and a 15.5% reduction in network carbon emissions. This effect can be moderated as the penetration rate of battery electric vehicles increases. Based on the empirical and simulating evidence, different expressway pollution management strategies can be implemented, such as petrol vehicle restrictions, ramp metering, congestion pricing, and perimeter control strategies.


Asunto(s)
Emisiones de Vehículos , Emisiones de Vehículos/análisis , China , Contaminantes Atmosféricos/análisis , Método de Montecarlo , Modelos Teóricos , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Ciudades , Monitoreo del Ambiente , Carbono/análisis , Carbono/metabolismo
17.
Toxics ; 12(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39058157

RESUMEN

Phthalate acid esters (PAEs) are one of the most widely used plasticizers globally, extensively employed in various decoration materials. However, studies on the impact of these materials on indoor environmental PAE pollution and their effects on human health are limited. In this study, forty dust samples were collected from four types of stores specializing in decoration materials (flooring, furniture boards, wall coverings, and household articles). The levels, sources, exposure doses, and potential health risks of PAEs in dust from decoration material stores were assessed. The total concentrations of Σ9PAE (the sum of nine PAEs) in dust from all decoration-material stores ranged from 46,100 ng/g to 695,000 ng/g, with a median concentration of 146,000 ng/g. DMP, DEP, DBP, and DEHP were identified as the predominant components. Among all stores, furniture board stores exhibited the highest Σ9PAE (159,000 ng/g, median value), while flooring stores exhibited the lowest (95,300 ng/g). Principal component analysis (PCA) showed that decoration materials are important sources of PAEs in the indoor environment. The estimated daily intakes of PAEs through non-dietary dust ingestion and dermal-absorption pathways among staff in various decoration-material stores were 60.0 and 0.470 ng/kg-bw/day (flooring stores), 113 and 0.780 ng/kg-bw/day (furniture board stores), 102 and 0.510 ng/kg-bw/day (wall covering stores), and 114 and 0.710 ng/kg-bw/day (household article stores). Particularly, staff in wall-covering and furniture-board stores exhibited relatively higher exposure doses of DEHP. Risk assessment indicated that although certain PAEs posed potential health risks, the exposure levels for staff in decoration material stores were within acceptable limits. However, staff in wall covering stores exhibited relatively higher risks, necessitating targeted risk-management strategies. This study provides new insights into understanding the risk associated with PAEs in indoor environments.

18.
ACS Synth Biol ; 13(7): 2215-2226, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38981096

RESUMEN

A major challenge in the fields of biological imaging and synthetic biology is noninvasively visualizing the functions of natural and engineered cells inside opaque samples such as living animals. One promising technology that addresses this limitation is ultrasound (US), with its penetration depth of several cm and spatial resolution on the order of 100 µm. Within the past decade, reporter genes for US have been introduced and engineered to link cellular functions to US signals via heterologous expression in commensal bacteria and mammalian cells. These acoustic reporter genes (ARGs) represent a novel class of genetically encoded US contrast agent, and are based on air-filled protein nanostructures called gas vesicles (GVs). Just as the discovery of fluorescent proteins was followed by the improvement and diversification of their optical properties through directed evolution, here we describe the evolution of GVs as acoustic reporters. To accomplish this task, we establish high-throughput, semiautomated acoustic screening of ARGs in bacterial cultures and use it to screen mutant libraries for variants with increased nonlinear US scattering. Starting with scanning site saturation libraries for two homologues of the primary GV structural protein, GvpA/B, two rounds of evolution resulted in GV variants with 5- and 14-fold stronger acoustic signals than the parent proteins. We anticipate that this and similar approaches will help high-throughput protein engineering play as large a role in the development of acoustic biomolecules as it has for their fluorescent counterparts.


Asunto(s)
Evolución Molecular Dirigida , Genes Reporteros , Evolución Molecular Dirigida/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Acústica , Nanoestructuras/química
19.
Harmful Algae ; 135: 102630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38830708

RESUMEN

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Asunto(s)
Dinoflagelados , Agua Dulce , Especies Introducidas , Filogenia , Navíos , Dinoflagelados/fisiología , Dinoflagelados/genética , Dinoflagelados/clasificación , Agua Dulce/parasitología , China , Ecosistema , Sedimentos Geológicos , Floraciones de Algas Nocivas
20.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853924

RESUMEN

The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...