Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38537947

RESUMEN

COPD poses a significant global public health challenge, primarily characterised by irreversible airflow restriction and persistent respiratory symptoms. The hallmark pathology of COPD includes sustained airway inflammation and the eventual destruction of lung tissue structure. While multiple risk factors are implicated in the disease's progression, the underlying mechanisms remain largely elusive. The perpetuation of inflammation is pivotal to the advancement of COPD, emphasising the importance of investigating these self-sustaining mechanisms for a deeper understanding of the pathogenesis. Autoimmune responses constitute a critical mechanism in maintaining inflammation, with burgeoning evidence pointing to their central role in COPD progression; yet, the intricacies of these mechanisms remain inadequately defined. This review elaborates on the evidence supporting the presence of autoimmune processes in COPD and examines the potential mechanisms through which autoimmune responses may drive the chronic inflammation characteristic of the disease. Moreover, we attempt to interpret the clinical manifestations of COPD through autoimmunity.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Autoinmunidad , Pulmón/patología , Factores de Riesgo , Inflamación
2.
J Inflamm Res ; 16: 5715-5728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053607

RESUMEN

Purpose: This study aimed to explore the effect of Rapamycin (Rapa) in Staphylococcus aureus (S. aureus) pneumonia and clarify its possible mechanism. Methods: We investigated the effects of Rapa on S. aureus pneumonia in mouse models and in macrophages cultured in vitro. Two possible mechanisms were investigated: the mTOR-RPS6 pathway phosphorylation and phagocytosis. Furthermore, for the mechanism verification in vivo, mice with specific Mtor knockout in myeloid cells were constructed for pneumonia models. Results: Rapa exacerbated S. aureus pneumonia in mouse models, promoting chemokines secretion and inflammatory cells infiltration in lung. In vitro, Rapa upregulated the secretion of chemokines and cytokines in macrophages induced by S. aureus. Mechanistically, the mTOR-ribosomal protein S6 (RPS6) pathway in macrophages was phosphorylated in response to S. aureus infection, and the inhibition of RPS6 phosphorylation upregulated the inflammation level. However, Rapa did not increase the phagocytic activity. Accordingly, mice with specific Mtor knockout in myeloid cells experienced more severe S. aureus pneumonia. Conclusion: Rapa exacerbates S. aureus pneumonia by increasing the inflammatory levels of macrophages. Inhibition of mTOR-RPS6 pathway upregulates the expression of cytokines and chemokines in macrophages, thus increases inflammatory cells infiltration and exacerbates tissue damage.

3.
BMC Pulm Med ; 23(1): 258, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452319

RESUMEN

BACKGROUND: Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD: In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, ß-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT: PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION: Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.


Asunto(s)
Asma , Neutrófilos , Animales , Ratones , Neutrófilos/metabolismo , Aspergillus fumigatus/metabolismo , Adenosina/metabolismo , Asma/terapia , Citocinas/metabolismo , Inflamación , Quimiocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Extractos Vegetales , Remodelación de las Vías Aéreas (Respiratorias)
4.
Front Immunol ; 13: 810824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309308

RESUMEN

Major histocompatibility complex class II (MHC II) is an essential immune regulatory molecule that plays an important role in antigen presentation and T-cell development. Abnormal MHC II expression can lead to immunodeficiency, clinically termed as type II bare lymphocyte syndrome (BLS), which usually results from mutations in the MHC II transactivator (CIITA) and other coactivators. Here, we present a new paradigm for MHC II deficiency in mice that involves a spontaneous point mutation on H2-Aa. A significantly reduced population of CD4+ T cells was observed in mice obtained from the long-term homozygous breeding of autophagy-related gene microtubule-associated protein 1 light chain 3 ß (Map1lc3b, Lc3b) knockout mice; this phenotype was not attributed to the original knocked-out gene. MHC II expression was generally reduced, together with a marked deficiency of H2-Aa in the immune cells of these mice. Using cDNA and DNA sequencing, a spontaneous H2-Aa point mutation that led to false pre-mRNA splicing, deletion of eight bases in the mRNA, and protein frameshift was identified in these mice. These findings led to the discovery of a new type of spontaneous MHC II deficiency and provided a new paradigm to explain type II BLS in mice.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Mutación Puntual , Animales , Linfocitos T CD4-Positivos , Ratones , Ratones Noqueados , Inmunodeficiencia Combinada Grave , Linfocitos T
5.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35098177

RESUMEN

BACKGROUND: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). METHODS: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). FINDINGS: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. INTERPRETATION: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. FUNDING: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , China , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Pandemias/prevención & control , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
7.
Cell Immunol ; 364: 104341, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798909

RESUMEN

Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.


Asunto(s)
Asma/metabolismo , Granulocitos/inmunología , Metabolismo de los Lípidos/inmunología , Macrófagos/inmunología , Linfocitos T/inmunología , Animales , Asma/tratamiento farmacológico , Asma/epidemiología , Ácidos Grasos/metabolismo , Humanos , Inmunidad Celular , Terapia Molecular Dirigida , Factores de Riesgo , Transducción de Señal
8.
Front Immunol ; 12: 594330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828547

RESUMEN

Cigarette smoke (CS)-induced macrophage activation and airway epithelial injury are both critical for the development of chronic obstructive pulmonary disease (COPD), while the eventual functions of autophagy in these processes remain controversial. We have recently developed a novel COPD mouse model which is based on the autoimmune response sensitized by CS and facilitated by elastin. In the current study, we therefore utilized this model to investigate the roles of autophagy in different stages of the development of bronchitis-like airway inflammation. Autophagic markers were increased in airway epithelium and lung tissues, and Becn+/- or Lc3b-/- mice exhibited reduced neutrophilic airway inflammation and mucus hyperproduction in this COPD mouse model. Moreover, treatment of an autophagic inhibitor 3-methyladenine (3-MA) either during CS-initiated sensitization or during elastin provocation significantly inhibited the bronchitis-like phenotypes in mice. Short CS exposure rapidly induced expression of matrix metallopeptidase 12 (MMP12) in alveolar macrophages, and treatment of doxycycline, a pan metalloproteinase inhibitor, during CS exposure effectively attenuated the ensuing elastin-induced airway inflammation in mice. CS extract triggered MMP12 expression in cultured macrophages, which was attenuated by autophagy impairment (Becn+/- or Lc3b-/-) or inhibition (3-MA or Spautin-1). These data, taken together, demonstrate that autophagy mediates both the CS-initiated MMP12 activation in macrophages and subsequent airway epithelial injury, eventually contributing to development COPD-like airway inflammation. This study reemphasizes that inhibition of autophagy as a novel therapeutic strategy for CS-induced COPD.


Asunto(s)
Autofagia , Bronquitis/etiología , Bronquitis/metabolismo , Elastina/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Animales , Biomarcadores , Bronquitis/patología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Elastina/genética , Expresión Génica , Humanos , Inmunohistoquímica , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Masculino , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones
9.
Sheng Li Xue Bao ; 72(5): 575-585, 2020 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-33106828

RESUMEN

Ferroptosis is a novel form of regulated cell death which is dependent on iron and reactive oxygen species (ROS) and associated with the accumulation of lipid peroxides. It is obviously different from other cell death types in terms of morphology, biochemistry, genetics, etc. Also, it is related to the production of iron catalyzed lipid peroxides which is triggered by non-enzymatic or enzymatic reactions. Ferroptosis has been proved to be involved in hematological diseases, cardio-cerebrovascular diseases, liver and kidney diseases. This paper will review the definition, mechanism, inducers of ferroptosis, as well as the function of ferroptosis in respiratory system. We expect to present a new concept for respiratory research and suggest potential targets for clinical prevention and treatment of respiratory diseases.


Asunto(s)
Ferroptosis , Trastornos Respiratorios , Muerte Celular , Humanos , Hierro , Especies Reactivas de Oxígeno
10.
Sheng Li Xue Bao ; 72(5): 617-630, 2020 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-33106832

RESUMEN

Corona virus disease 2019 (COVID-19) is a new type of coronavirus pneumonia, which is caused by infection of a novel coronavirus, SARS-CoV-2. The virus infects lung cells by binding angiotensin-converting enzyme 2 (ACE2) of cell surface, which leads to leukocyte infiltration, increased permeability of blood vessels and alveolar walls, and decreased surfactant in the lung, causing respiratory symptoms. The aggravation of local inflammation causes cytokine storm, resulting in systemic inflammatory response syndrome. In December 2019, a number of new pneumonia cases were reported by Wuhan Municipal Health Commission, after then a novel coronavirus was isolated and identified as SARS-CoV-2. To the date of Sep. 13th, 2020, COVID-19 is affecting 216 countries or regions, causing 28 637 952 cases, 917 417 deaths, and the mortality rate is 3.20%. This review will summarize the structure of SARS-CoV-2 and the pharmaceutical treatment of COVID-19, and their potential relationships.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
13.
Eur Respir J ; 56(5)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527738

RESUMEN

INTRODUCTION: Acute lung injury (ALI) is a fatal but undertreated condition with severe neutrophilic inflammation, although little is known about the functions of eosinophils in the pathogenesis of ALI. Our objectives were to investigate the roles and molecular mechanisms of eosinophils in ALI. METHODS: Pulmonary eosinophils were identified by flow cytometry. Mice with abundant or deficient eosinophils were used. Cellularity of eosinophils and neutrophils in bronchoalveolar lavage fluid, inflammatory assessment, and survival rate were determined. Human samples were also used for validating experimental results. RESULTS: Blood eosinophils were increased in surviving patients with acute respiratory distress syndrome (ARDS) independent of corticosteroid usage. There existed homeostatic eosinophils in lung parenchyma in mice and these homeostatic eosinophils, originating from the bone marrow, were predominantly CD101-. More CD101- eosinophils could be recruited earlier than lipopolysaccharide (LPS)-initiated neutrophilic inflammation. Loss of eosinophils augmented LPS-induced pulmonary injury. Homeostatic CD101- eosinophils ameliorated, while allergic CD101+ eosinophils exacerbated, the neutrophilic inflammation induced by LPS. Likewise, CD101 expression in eosinophils from ARDS patients did not differ from healthy subjects. Mechanistically, CD101- eosinophils exhibited higher levels of Alox15 and Protectin D1. Administration of Protectin D1 isomer attenuated the neutrophilic inflammation. CONCLUSIONS: Collectively, our findings identify an uncovered function of native CD101- eosinophils in suppressing neutrophilic lung inflammation and suggest a potential therapeutic target for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Endotoxinas , Lesión Pulmonar Aguda/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar , Eosinófilos , Humanos , Lipopolisacáridos , Pulmón , Ratones
14.
Eur Respir J ; 56(3)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32366484

RESUMEN

It is currently not understood whether cigarette smoke exposure facilitates sensitisation to self-antigens and whether ensuing auto-reactive T cells drive chronic obstructive pulmonary disease (COPD)-associated pathologies.To address this question, mice were exposed to cigarette smoke for 2 weeks. Following a 2-week period of rest, mice were challenged intratracheally with elastin for 3 days or 1 month. Rag1-/- , Mmp12-/- , and Il17a-/- mice and neutralising antibodies against active elastin fragments were used for mechanistic investigations. Human GVAPGVGVAPGV/HLA-A*02:01 tetramer was synthesised to assess the presence of elastin-specific T cells in patients with COPD.We observed that 2 weeks of cigarette smoke exposure induced an elastin-specific T cell response that led to neutrophilic airway inflammation and mucus hyperproduction following elastin recall challenge. Repeated elastin challenge for 1 month resulted in airway remodelling, lung function decline and airspace enlargement. Elastin-specific T cell recall responses were dose dependent and memory lasted for over 6 months. Adoptive T cell transfer and studies in T cells deficient Rag1-/- mice conclusively implicated T cells in these processes. Mechanistically, cigarette smoke exposure-induced elastin-specific T cell responses were matrix metalloproteinase (MMP)12-dependent, while the ensuing immune inflammatory processes were interleukin 17A-driven. Anti-elastin antibodies and T cells specific for elastin peptides were increased in patients with COPD.These data demonstrate that MMP12-generated elastin fragments serve as a self-antigen and drive the cigarette smoke-induced autoimmune processes in mice that result in a bronchitis-like phenotype and airspace enlargement. The study provides proof of concept of cigarette smoke-induced autoimmune processes and may serve as a novel mouse model of COPD.


Asunto(s)
Elastina , Enfermedad Pulmonar Obstructiva Crónica , Animales , Autoinmunidad , Modelos Animales de Enfermedad , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Humo/efectos adversos , Fumar/efectos adversos
15.
Mol Immunol ; 123: 18-25, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388106

RESUMEN

INTRODUCTION: Asthma is a worldwide problem that is caused by complex underlying immune dysregulation. The identification of potential prognostic markers of asthma may provide information for treatment. The purpose of this study was to explore the key mechanisms involved in the development of asthma on the basis of microarray analysis. METHODS: The expression profile data of GSE43696, which contains 20 endobronchial epithelial brushing samples from healthy patients and 88 from asthma patients, were obtained from Gene Expression Omnibus. For the present study, we built co-expression modules by weighted gene co-expression network analysis (WGCNA). This new analysis strategy was applied to the data set to investigate the relationships underlying the modules and the pathogenesis of asthma. Functional enrichment analysis was performed on these co-expression genes from the modules, and a gene network was then constructed. In addition, mouse models of HDM-induced and OVA-induced asthma were established, and the expression of hub genes was measured. RESULTS: First, using WGCNA, 20 co-expression modules were constructed with 19,596 genes obtained from 108 human endobronchial epithelial brushing samples. The number of genes within the modules ranged from 41 to 845. According to the colours assigned by the system, the module positively correlated with asthma status was named 'red module', and the module positively correlated with asthma severity was named 'purple module'. The results of a functional enrichment analysis showed that the red module was mainly enriched in intracellular calcium-activated chloride channel activity, intracellular chloride channel activity and endopeptidase inhibitor activity. The purple module was mainly enriched in microtubule motor activity and microtubule-binding and motor activity. Moreover, the mRNA expression levels of the 15 hub genes were confirmed to be significantly upregulated in the HDM mouse model, and 12 hub genes were upregulated in the OVA model. CONCLUSIONS: The hub genes ANO7, PYCR1 and UBE2C might play potential roles in the pathogenesis of asthma. Our findings provided a framework of co-expression gene modules of asthma and led to the identification of some new markers that might be potential targets for the development of new drugs and diagnostic markers.


Asunto(s)
Asma/genética , Asma/patología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Adulto , Animales , Biomarcadores/análisis , Bronquios/metabolismo , Bronquios/patología , Células Cultivadas , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices/métodos , Persona de Mediana Edad , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Adulto Joven
16.
Autophagy ; 16(3): 435-450, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31203721

RESUMEN

Particulate matter (PM) is able to induce airway epithelial injury, while the detailed mechanisms remain unclear. Here we demonstrated that PM exposure inactivated MTOR (mechanistic target of rapamycin kinase), enhanced macroautophagy/autophagy, and impaired lysosomal activity in HBE (human bronchial epithelial) cells and in mouse airway epithelium. Genetic or pharmaceutical inhibition of MTOR significantly enhanced, while inhibition of autophagy attenuated, PM-induced IL6 expression in HBE cells. Consistently, club-cell-specific deletion of Mtor aggravated, whereas loss of Atg5 in bronchial epithelium reduced, PM-induced airway inflammation. Interestingly, the augmented inflammatory responses caused by MTOR deficiency were markedly attenuated by blockage of downstream autophagy both in vitro and in vivo. Mechanistically, the dysregulation of MTOR-autophagy signaling was partially dependent on activation of upstream TSC2, and interacted with the TLR4-MYD88 to orchestrate the downstream NFKB activity and to regulate the production of inflammatory cytokines in airway epithelium. Moreover, inhibition of autophagy reduced the expression of EPS15 and the subsequent endocytosis of PM. Taken together, the present study provides a mechanistic explanation for how airway epithelium localized MTOR-autophagy axis regulates PM-induced airway injury, suggesting that activation of MTOR and/or suppression of autophagy in local airway might be effective therapeutic strategies for PM-related airway disorders.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; ALI: air liquid interface; AP2: adaptor related protein complex 2; ATG: autophagy related; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CXCL: C-X-C motif chemokine ligand; DOX: doxycycline; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EPS15: epidermal growth factor receptor pathway substrate 15; HBE: human bronchial epithelial; H&E: hematoxylin & eosin; IKK: IKB kinase; IL: interleukin; LAMP2: lysosomal-associated membrane protein 2; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTEC: mouse tracheal epithelial cells; MTOR: mechanistic target of rapamycin kinase; MYD88: MYD88 innate immune signal transduction adaptor; NFKB: nuclear factor of kappa B; NFKBIA: NFKB inhibitor alpha; PM: particulate matter; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RELA: RELA proto-oncogene, NFKB subunit; SCGB1A1: secretoglobin family 1A member 1; siRNA: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electronic microscopy; TLR4: toll like receptor 4; TSC2: TSC complex subunit 2.


Asunto(s)
Autofagia , Células Epiteliales/patología , Material Particulado/toxicidad , Neumonía/inducido químicamente , Neumonía/patología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia/metabolismo , Bronquios/patología , Línea Celular , Citocinas/metabolismo , Endocitosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Eliminación de Gen , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , Proto-Oncogenes Mas , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
17.
Medicine (Baltimore) ; 98(25): e16145, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31232969

RESUMEN

RATIONALE: Listeria monocytogenes rarely affects immunocompetent adults, and only a few cases of encephalitis caused by L monocytogenes in humans have been reported in China. PATIENT CONCERNS: A 37-year-old male patient presented with headache and fever of 38°C to 39°C for 2 days and dysphoria and dystrophy for 1 day. DIAGNOSIS: The patient was diagnosed as having encephalitis, and his cerebrospinal fluid (CSF) and blood cultures tested positive for L monocytogenes. INTERVENTIONS: The patient was treated with intravenous vancomycin, meropenem, mannitol, methylprednisolone, and enteral nutrition. The computed tomography (CT) scan showed swelling of the brain and hydrocephalus. The patient was treated with emergent surgery, a ventricular drainage tube was inserted, and the CSF was drained daily. OUTCOMES: Despite adequate therapy, the illness was severe and progressed rapidly. The patient died 2 weeks after admission. LESSONS: We report a rare case of L monocytogenes encephalitis in a previously healthy immunocompetent adult in China. The patient's CT scans showed increasing brain swelling and hydrocephalus, and the patient's condition progressively deteriorated.


Asunto(s)
Encefalitis/diagnóstico , Listeriosis/diagnóstico , Adulto , Antibacterianos/uso terapéutico , China , Diuréticos Osmóticos/uso terapéutico , Servicio de Urgencia en Hospital/organización & administración , Encefalitis/diagnóstico por imagen , Encefalitis/etiología , Humanos , Listeria monocytogenes/patogenicidad , Listeriosis/complicaciones , Listeriosis/diagnóstico por imagen , Masculino , Manitol/uso terapéutico , Meropenem/uso terapéutico , Tomografía Computarizada por Rayos X/métodos , Vancomicina/uso terapéutico
18.
Acta Pharmacol Sin ; 40(6): 769-780, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30446733

RESUMEN

Tissue factor (TF)-dependent coagulation contributes to lung inflammation and the pathogenesis of acute lung injury (ALI). In this study, we explored the roles of targeted endothelial anticoagulation in ALI using two strains of transgenic mice expressing either a membrane-tethered human tissue factor pathway inhibitor (hTFPI) or hirudin fusion protein on CD31+ cells, including vascular endothelial cells (ECs). ALI was induced by intratracheal injection of LPS, and after 24 h the expression of TF and protease-activated receptors (PARs) on EC in lungs were assessed, alongside the extent of inflammation and injury. The expression of TF and PARs on the EC in lungs was upregulated after ALI. In the two strains of transgenic mice, expression of either of hTFPI or hirudin by EC was associated with significant reduction of inflammation, as assessed by the extent of leukocyte infiltration or the levels of proinflammatory cytokines, and promoted survival after LPS-induced ALI. The beneficial outcomes were associated with inhibition of the expression of chemokine CCL2 in lung tissues. The protection observed in the CD31-TFPI-transgenic strain was abolished by injection of an anti-hTFPI antibody, but not by prior engraftment of the transgenic strains with WT bone marrow, confirming that the changes observed were a specific transgenic expression of anticoagulants by EC. These results demonstrate that the inflammation in ALI is TF and thrombin dependent, and that expression of anticoagulants by EC significantly inhibits the development of ALI via repression of leukocyte infiltration, most likely via inhibition of chemokine gradients. These data enhance our understanding of the pathology of ALI and suggest a novel therapeutic strategy for treatment.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Endoteliales/metabolismo , Hirudinas/metabolismo , Inflamación/metabolismo , Lipoproteínas/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Coagulación Sanguínea/fisiología , Quimiocinas/metabolismo , Quimiotaxis de Leucocito/fisiología , Hirudinas/genética , Humanos , Inflamación/inducido químicamente , Sanguijuelas/química , Lipopolisacáridos , Lipoproteínas/genética , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Pseudomonas aeruginosa/química , Receptores Proteinasa-Activados/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
19.
Cell Death Differ ; 26(9): 1859-1860, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30546073

RESUMEN

Since the publication of the article, the authors became aware that Figs. 1c, 5k and 6m contained errors in representative image and PAS score in control groups. The corrected Figs. 1c, 5k, and 6m are given below, and the figure legends are the same as original.

20.
Crit Care ; 22(1): 301, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442203

RESUMEN

BACKGROUND: Aerosolized antibiotics have been proposed as a novel and promising treatment option for the treatment of ventilator-associated pneumonia (VAP). However, the optimum aerosolized antibiotics for VAP remain uncertain. METHODS: We included studies from two systematic reviews and searched PubMed, EMBASE, and Cochrane databases for other studies. Eligible studies included randomized controlled trials and observational studies. Extracted data were analyzed by pairwise and network meta-analysis. RESULTS: Eight observational and eight randomized studies were identified for this analysis. By pairwise meta-analysis using intravenous antibiotics as the reference, patients treated with aerosolized antibiotics were associated with significantly higher rates of clinical recovery (risk ratio (RR) 1.21, 95% confidence interval (CI) 1.09-1.34; P = 0.001) and microbiological eradication (RR 1.42, 95% CI 1.22-1.650; P < 0.0001). There were no significant differences in the risks of mortality (RR 0.88, 95% CI 0.74-1.04; P = 0.127) or nephrotoxicity (RR 1.00, 95% CI 0.72-1.39; P = 0.995). Using network meta-analysis, clinical recovery benefits were seen only with aerosolized tobramycin and colistin (especially tobramycin), and microbiological eradication benefits were seen only with colistin. Aerosolized tobramycin was also associated with significantly lower mortality when compared with aerosolized amikacin and colistin and intravenous antibiotics. The assessment of rank probabilities indicated aerosolized tobramycin presented the greatest likelihood of having benefits for clinical recovery and mortality, and aerosolized colistin presented the best benefits for microbiological eradication. CONCLUSIONS: Aerosolized antibiotics appear to be a useful treatment for VAP with respect to clinical recovery and microbiological eradication, and do not increase mortality or nephrotoxicity risks. Our network meta-analysis in patients with VAP suggests that clinical recovery benefits are associated with aerosolized tobramycin and colistin (especially tobramycin), microbiological eradication with aerosolized colistin, and survival with aerosolized tobramycin, mostly based on observational studies. Due to the low levels of evidence, definitive recommendations cannot be made before additional, large randomized studies are carried out.


Asunto(s)
Administración por Inhalación , Antibacterianos/administración & dosificación , Neumonía Asociada al Ventilador/tratamiento farmacológico , Antibacterianos/uso terapéutico , Teorema de Bayes , Humanos , Metaanálisis en Red , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...