Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 346, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898493

RESUMEN

Chemoresistance remains a significant challenge for effective breast cancer treatment which leads to cancer recurrence. CRISPR-directed gene editing becomes a powerful tool to reduce chemoresistance by reprogramming the tumor microenvironment. Previous research has revealed that Chinese herbal extracts have significant potential to overcome tumor chemoresistance. However, the therapeutic efficacy is often limited due to their poor tumor targeting and in vivo durability. Here we have developed a tumor microenvironment responsive nanoplatform (H-MnO2(ISL + DOX)-PTPN2@HA, M(I + D)PH) for nano-herb and CRISPR codelivery to reduce chemoresistance. Synergistic tumor inhibitory effects were achieved by the treatment of isoliquiritigenin (ISL) with doxorubicin (DOX), which were enhanced by CRISPR-based gene editing to target protein tyrosine phosphatase non-receptor type 2 (PTPN2) to initiate long-term immunotherapy. Efficient PTPN2 depletion was observed after treatment with M(I + D)PH nanoparticles, which resulted in the recruitment of intratumoral infiltrating lymphocytes and an increase of proinflammatory cytokines in the tumor tissue. Overall, our nanoparticle platform provides a diverse technique for accomplishing synergistic chemotherapy and immunotherapy, which offers an effective treatment alternative for malignant neoplasms.


Asunto(s)
Doxorrubicina , Inmunoterapia , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Inmunoterapia/métodos , Doxorrubicina/farmacología , Humanos , Ratones , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Nanopartículas/química , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Edición Génica/métodos , Sistemas CRISPR-Cas , Compuestos de Manganeso/química , Resistencia a Antineoplásicos/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Antineoplásicos/farmacología , Antineoplásicos/química , Óxidos
2.
iScience ; 27(5): 109547, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660400

RESUMEN

Circulating tumor cell clusters/micro-emboli (CTM) possess greater metastatic capacity and survival advantage compared to individual circulating tumor cell (CTC). However, the formation of CTM subtypes and their role in tumor metastasis remain unclear. In this study, we used a microfluidic Cluster-Chip with easy operation and high efficiency to isolate CTM from peripheral blood, which confirmed their correlation with clinicopathological features and identified the critical role of CTC-platelet clusters in breast cancer metastasis. The correlation between platelets and CTM function was further confirmed in a mouse model and RNA sequencing of CTM identified high-expressed genes related to hypoxia stimulation and platelet activation which possibly suggested the correlation of hypoxia and CTC-platelet cluster formation. In conclusion, we successfully developed the Cluster-Chip platform to realize the clinical capture of CTMs and analyze the biological properties of CTC-platelet clusters, which could benefit the design of potential treatment regimens to prevent CTM-mediated metastasis and tumor malignant progression.

3.
Eur J Pharmacol ; 962: 176217, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38036200

RESUMEN

The formation of the microenvironment preceding liver metastasis is intricately linked to the intestinal tract. In recent years, mounting evidence has revealed the significant involvement of neutrophil extracellular traps (NETs) in tumor metastasis, particularly in liver metastasis. Disruption of the intestinal barrier can lead to the translocation of bacteria and their metabolites, such as lipopolysaccharide, into the liver. As the primary defense against pathogens, NETs help eliminate gut-derived toxins and shape the liver's inflammatory and immunosuppressive environment. However, this double-edged sword effect can potentially stimulate tumor metastasis by creating a fertile ground for the growth of intestinal tumor cells due to impaired liver tissue and reduced activity of killer immune cells. This comprehensive review systematically describes the influence factors and mechanisms of NETs in colon cancer metastasis and explores their potential as biomarkers and therapeutic targets for liver metastasis.


Asunto(s)
Neoplasias del Colon , Trampas Extracelulares , Microbioma Gastrointestinal , Neoplasias Hepáticas , Neoplasias del Recto , Humanos , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Neoplasias Hepáticas/patología , Neoplasias del Colon/patología , Neoplasias del Recto/metabolismo , Microambiente Tumoral
4.
Acta Pharm Sin B ; 13(11): 4621-4637, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969730

RESUMEN

Hepatic stellate cells (HSCs) represent a significant component of hepatocellular carcinoma (HCC) microenvironments which play a critical role in tumor progression and drug resistance. Tumor-on-a-chip technology has provided a powerful in vitro platform to investigate the crosstalk between activated HSCs and HCC cells by mimicking physiological architecture with precise spatiotemporal control. Here we developed a tri-cell culture microfluidic chip to evaluate the impact of HSCs on HCC progression. On-chip analysis revealed activated HSCs contributed to endothelial invasion, HCC drug resistance and natural killer (NK) cell exhaustion. Cytokine array and RNA sequencing analysis were combined to indicate the iron-binding protein LIPOCALIN-2 (LCN-2) as a key factor in remodeling tumor microenvironments in the HCC-on-a-chip. LCN-2 targeted therapy demonstrated robust anti-tumor effects both in vitro 3D biomimetic chip and in vivo mouse model, including angiogenesis inhibition, sorafenib sensitivity promotion and NK-cell cytotoxicity enhancement. Taken together, the microfluidic platform exhibited obvious advantages in mimicking functional characteristics of tumor microenvironments and developing targeted therapies.

5.
Pharmacol Res ; 198: 106986, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944834

RESUMEN

Tumor cell extravasation across endothelial barrier has been recognized as a pivotal event in orchestrating metastasis formation. This event is initiated by the interactions of extravasating tumor cells with endothelial cells (ECs). Therefore, targeting the crosstalk between tumor cells and ECs might be a promising therapeutic strategy to prevent metastasis. In this study, we demonstrated that Rh1, one of the main ingredients of ginseng, hindered the invasion of breast cancer (BC) cells as well as diminished the permeability of ECs both in vitro and in vivo, which was responsible for the attenuated tumor cell extravasation across endothelium. Noteworthily, we showed that ECs were capable of inducing the epithelial-mesenchymal transition (EMT) and invadopodia of BC cells that are essential for tumor cell migration and invasion through limiting the nuclear translocation of hematopoietically expressed homeobox (HHEX). The decreased nuclear HHEX paved the way for initiating the CCL20/CCR6 signaling axis, which in turn contributed to damaged endothelial junctions, uncovering a new crosstalk mode between tumor cells and ECs. Intriguingly, Rh1 inhibited the kinase activity of casein kinase II subunit alpha (CK2α) and further promoted the nuclear translocation of HHEX in the BC cells, which resulted in the disrupted crosstalk between chemokine (C-C motif) ligand 20 (CCL20) in the BC cells and chemokine (C-C motif) receptor 6 (CCR6) in the ECs. The prohibited CCL20-CCR6 axis by Rh1 enhanced vascular integrity and diminished tumor cell motility. Taken together, our data suggest that Rh1 serves as an effective natural CK2α inhibitor that can be further optimized to be a therapeutic agent for reducing tumor cell extravasation.


Asunto(s)
Quinasa de la Caseína II , Genes Homeobox , Células Endoteliales , Endotelio , Quimiocinas
6.
ACS Appl Mater Interfaces ; 15(13): 16329-16342, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946515

RESUMEN

Multidrug resistance in cancer stem cells (CSCs) is a major barrier to chemotherapy; hence, developing CSC-specific targeted nanocarriers for efficient drug delivery is critical. In this study, monodisperse hollow-structured MnO2 (H-MnO2) with a mesoporous shell was created for efficient targeted drug delivery. An effective therapeutic compound isoliquiritigenin (ISL) was confirmed to inhibit the lung cancer stem-cell phenotype by natural compound screening based on integrated microfluidic devices. The resultant H-MnO2 showed a high drug-loading content of the potent CSC-targeting compound ISL and near-infrared fluorescent dye indocyanine green (ICG). In addition, H-MnO2 was successively modified with hyaluronic acid (HA) to enhance targeting CSCs with high CD44 expression levels. The H-MnO2@(ICG + ISL)@HA nanocomposites displayed promising chemotherapeutic and photothermal treatment capabilities, as well as NIR-triggered drug release, which showed excellent CSC-killing effects and tumor inhibition efficacy. Meanwhile, the development of the tumor was effectively restrained by NIR-triggered phototherapy and prominent chemotherapy without obvious side effects after tail vein injection of the nanocomposites in vivo. In summary, the prepared nanocomposites accomplished synergistic cancer therapy that targets CSCs, offering a versatile platform for lung cancer diagnosis and treatment.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Compuestos de Manganeso , Microambiente Tumoral , Óxidos , Fototerapia , Sistemas de Liberación de Medicamentos , Verde de Indocianina , Células Madre Neoplásicas , Doxorrubicina/farmacología , Línea Celular Tumoral
7.
Clin Exp Pharmacol Physiol ; 50(1): 82-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36153795

RESUMEN

Angiotensin II (AngII)-mediated pathological angiogenesis is one of the important factors promoting the progression of atherosclerosis, tumour metastasis, and diabetic retinopathy. Here, we first demonstrate that salvianolic acid B (Sal B) attenuated AngII-induced angiogenesis by downregulating the IRE1/ASK1/JNK/p38MAPK signalling pathway and protected vascular endothelial cells from hypoxia-induced damage. These pharmacological consequences could be ascribed to the unique interactions between Sal B and the ATP-binding cavity of IREIα, leading to bi-directional roles of IRE1 kinase and endonuclease activity; this may possibly be one of the essential mechanisms of the bi-directional regulation of angiogenesis in different conditions. Moreover, our results indicated that IRE1 was a novel anti-angiogenesis target and type I IRE1 kinase inhibitor (e.g., Sal B, APY29) and might be a potentially eligible low-toxicity drug for treating AngII-mediated pathological angiogenesis.


Asunto(s)
Neovascularización Patológica , Inhibidores de Proteínas Quinasas , Angiotensina II/farmacología , Células Endoteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Front Immunol ; 13: 1035323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439137

RESUMEN

Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.


Asunto(s)
Síndromes de Inmunodeficiencia , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Inhibidores de la Angiogénesis/uso terapéutico , Inmunoterapia/métodos , Neovascularización Patológica , Neoplasias/patología , Terapia de Inmunosupresión , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Microambiente Tumoral
9.
Biomaterials ; 279: 121233, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34749073

RESUMEN

Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Cobre , Inmunoterapia , Ratones , Neoplasias/terapia , Fototerapia , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Ribonucleoproteínas , Sulfuros
10.
Front Cell Dev Biol ; 9: 626045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568308

RESUMEN

The role of gut microbiota in the development of various tumors has been a rising topic of public interest, and in recent years, many studies have reported a close relationship between microbial groups and tumor development. Gut microbiota play a role in host metabolism, and the positive and negative alterations of these microbiota have an effect on tumor treatment. The microbiota directly promote, eliminate, and coordinate the efficacy of chemotherapy drugs and the toxicity of adjuvant drugs, and enhance the ability of patients to respond to tumors in adjuvant immunotherapy. In this review, we outline the significance of gut microbiota in tumor development, reveal its impacts on chemotherapy and immunotherapy, and discover various potential mechanisms whereby they influence tumor treatment. This review demonstrates the importance of intestinal microbiota-related research for clinical tumor treatment and provides additional strategy for clinical assistance in cancer treatment.

11.
Adv Healthc Mater ; 10(20): e2100985, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34486235

RESUMEN

Robust isolation of cancer stem cells (CSCs) in a high-throughput, label-free manner is critical for understanding tumor heterogeneity and developing therapeutic strategies targeting CSCs. Cell-mechanics-based microfluidic sorting systems provide efficient and specific platforms for investigation of stem cell-like characteristics on the basis of cell deformability and cell-substrate adhesion properties. In the present study, a microfluidic tandem mechanical sorting system is developed to enrich CSCs with high flexibility and low adhesive capacity. In the integrated microfluidic system, cancer cells are driven by hydrodynamic forces to flow continuously through two featured devices, which are functionalized with sequentially variable microbarriers and surface-coated fluid mixing microchannels, respectively. Collected deformable and low-adhesive cancer cells exhibit enhanced stem cell-like properties with higher stemness and metastasis capacity both in vitro and in vivo, compared with each single device separation. Using these devices, bioactive natural compound screening targeting CSCs is performed and a potent therapeutic compound isoliquiritigenin from licorice is identified to inhibit the lung cancer stem cell phenotype. Taken together, this microfluidic tandem mechanical sorting system can facilitate drug screening targeting CSCs and the analysis of signals regulating CSC function in drug resistance.


Asunto(s)
Microfluídica , Neoplasias , Línea Celular Tumoral , Separación Celular , Detección Precoz del Cáncer , Células Madre Neoplásicas
12.
Front Pharmacol ; 12: 656115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276360

RESUMEN

Background: Si-Ni-San (SNS), a commonly used traditional Chinese medicine (TCM) formula, has potency against liver diseases, such as hepatitis and non-alcoholic fatty liver disease (NAFLD). However, the therapeutic efficacy and pharmacological mechanisms of action of SNS against liver fibrosis remain largely unclear. Methods: A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was adopted for the first time to investigate the beneficial effects of SNS on liver fibrosis. The potential mechanisms of action of SNS were explored using the network pharmacology-based strategy and validated with the aid of diverse assays. Results: SNS treatment reduced collagen and ECM deposition, downregulated fibrosis-related factor (hyaluronic acid and laminin) contents in serum, maintained the morphological structure of liver tissue, and improved liver function in the liver fibrosis model. Based on network pharmacology results, apoptosis, inflammation and angiogenesis, together with the associated pathways (including VEGF, TNF, caspase, PPAR-γ and NF-κB), were identified as the mechanisms underlying the effects of SNS on liver fibrosis. Further in vivo experiments validated the significant mitigatory effects of SNS on inflammatory infiltration and pro-inflammatory cytokine contents (IFNγ, IL-1ß and TGF-ß1) in liver tissues of mice with liver fibrosis. SNS suppressed pathologic neovascularization as well as levels of VEGFR1, VEGF and VEGFR2 in liver tissues. SNS treatment additionally inhibited hepatic parenchyma cell apoptosis in liver tissues of mice with liver fibrosis and regulated apoptin expression while protecting L02 cells against apoptosis induced by TNF-α and Act D in vitro. Activation of hepatic stellate cells was suppressed and the balance between MMP13 and TIMP1 maintained in vitro by SNS. These activities may be associated with SNS-induced NF-κB suppression and PPAR-γ activation. Conclusion: SNS effectively impedes liver fibrosis progression through alleviating inflammation, ECM accumulation, aberrant angiogenesis and apoptosis of hepatic parenchymal cells along with inhibiting activation of hepatic stellate cells through effects on multiple targets and may thus serve as a novel therapeutic regimen for this condition.

13.
Small ; 17(33): e2101155, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34269521

RESUMEN

Manipulation of CRISPR delivery for stimuli-responsive gene editing is crucial for cancer therapeutics through maximizing efficacy and minimizing side-effects. However, realizing controlled gene editing for synergistic combination therapy remains a key challenge. Here, a near-infrared (NIR) light-triggered thermo-responsive copper sulfide (CuS) multifunctional nanotherapeutic platform is constructed to achieve controlled release of CRISPR-Cas9 ribonucleoprotein (RNP) and doxorubicin for tumor synergistic combination therapy involving in gene therapy, mild-photothermal therapy (PTT), and chemotherapy. The semiconductor CuS serves as a "photothermal converter" and can stably convert NIR light (808 nm) into local thermal effect to provide photothermal stimulation. The double-strand formed between CuS nanoparticle-linked DNA fragments and single-guide RNA is employed as a controlled element in response to photothermal stimulation for controlled gene editing and drug release. Hsp90α, one subunit of heat shock protein 90 (Hsp90), is targeted by Cas9 RNP to reduce tumor heat tolerance for enhanced mild-PTT effects (≈43 °C). Significant synergistic therapy efficacy can be observed by twice NIR light irradiation both in vitro and in vivo, compared to PTT alone. Overall, this exogenously controlled method provides a versatile strategy for controlled gene editing and drug release with potentially synergistic combination therapy.


Asunto(s)
Nanopartículas , Fototerapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Cobre , Doxorrubicina , Terapia Fototérmica , Ribonucleoproteínas
14.
J Inflamm (Lond) ; 18(1): 23, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112202

RESUMEN

BACKGROUND: It is well accepted that the immune system efficiently contributes to positive outcomes of chemotherapeutic cancer treatment by activating immunogenic cell death (ICD). However, only a limited number of ICD-inducing compounds are well characterized at present; therefore, identification of novel ICD inducers is urgently needed for cancer drug discovery, and the need is becoming increasingly urgent. METHODS: Herein, we assessed the antitumour activity of bullatacin by MTS assay and apoptosis assay. ICD biomarkers, such as calreticulin (CRT), high-mobility group protein B1 (HMGB-1), heat shock protein (HSP)70, HSP90 and ATP, were assessed by Western blotting, ELISA and flow cytometry. Western blot and qPCR assays were performed to explore the underlying mechanisms of bullatacin-induced ICD. Flow cytometry was used to detect macrophage phagocytosis. RESULTS: First, bullatacin induced apoptosis in both SW480 cells and HT-29 cells in a time-dependent manner at 10 nM, as assessed by flow cytometry. Moreover, Western blot and flow cytometry assays showed that CRT and HSP90 (biomarkers of early ICD) significantly accumulated on the cell membrane surface after approximately 6 h of treatment with bullatacin. In addition, ELISAs and Western blot assays showed that the second set of hallmarks required for ICD (HMGB1, HSP70 and HSP90) were released in the conditioned media of both SW480 and HT-29 cells after 36 h of treatment. Furthermore, qPCR and Western blot assays indicated that bullatacin triggered ICD via activation of the endoplasmic reticulum stress (ERS) signalling pathway. Finally, bullatacin promoted macrophage phagocytosis. CONCLUSION: This study documents that bullatacin, a novel ICD inducer, triggers immunogenic tumour cell death by activating ERS even at a relatively low concentration in vitro.

15.
Oxid Med Cell Longev ; 2020: 2375676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685087

RESUMEN

Accumulating evidences implicate that gut microbiota play an important role in the onset and prolongation of fat inflammation and diabetes. Sennoside A, the main active ingredient of Rhizoma Rhei (rhubarb), is widely used for constipation as a kind of anthranoid laxative (e.g., senna). Here, we put forward the hypothesis that the structural alteration of gut microbiota in obesity mice may be involved in the pathogenesis of type 2 diabetes (T2D) which may be ameliorated by Sennoside A. We investigated the appearance of obesity, insulin resistance, host inflammation, and leaky gut phenotype with or without Sennoside A in db/db mice. Horizontal fecal microbiota transplantation (FMT) was used to confirm the critical roles of gut microbiota in the amelioration of the indices in T2D mice after Sennoside A treatment. As a result, we found that Sennoside A administration markedly improved the indices in T2D mice and obesity-related traits including blood glucose level, body weight, lipid metabolism disorder, and insulin resistance. The gut microbiota changed quickly during the onset of T2D in db/db mice, which confirmed the hypothesis that gut microbiota was involved in the pathogenesis of T2D. Sennoside A altered gut microbial composition which might mediate the antiobesogenic effects in T2D remission. Sennoside A also reduced inflammation and increased tight junction proteins in the ileum in gene-deficient mice via gut microbiota alteration. FMT lowered the blood glucose level and improved insulin resistance, corroborating that Sennoside A perhaps exerted its antiobesogenic effects through gut microbiota alteration. Chemical Compounds Studied in This Article. Compounds studied in this article include Sennoside A (PubChem CID: 73111) and metformin hydrochloride (PubChem CID: 14219).


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Laxativos/uso terapéutico , Obesidad/tratamiento farmacológico , Senósidos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Laxativos/farmacología , Masculino , Ratones , Senósidos/farmacología
16.
Aging (Albany NY) ; 12(9): 8167-8190, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365333

RESUMEN

Biologically active natural products have been used for the chemoprevention of cutaneous tumors. Lycopene is the main active phytochemical in tomatoes. We herein aimed to assess the cancer preventive effects of lycopene and to find potential molecular targets. In chemically-induced cutaneous tumor mice and cell models, lycopene attenuated cutaneous tumor incidence and multiplicity as well as the tumorigenesis of normal cutaneous cells in phase-selectivity (only in the promotion phase) manners. By utilizing a comprehensive approach combining bioinformatics with network pharmacology, we predicted that intracellular autophagy and redox status were associated with lycopene's preventive effect on cutaneous tumors. Lycopene stimulated the activation of antioxidant enzymes and the translocation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) that predominantly maintained intracellular redox equilibrium. The cancer chemopreventive effects were mediated by Nrf2. Further, lycopene enhanced the expression of autophagy protein p62. Therefore this led to the degradation of Keap1(Kelch ECH associating protein 1), the main protein locking Nrf2 in cytoplasm. In conclusion, our study provides preclinical evidence of the chemopreventive effects of lycopene on cutaneous tumors and reveals the mechanistic link between lycopene's stimulation of Nrf2 signaling pathway and p62-mediated degradation of Keap1 via the autophagy-lysosomal pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína 1 Asociada A ECH Tipo Kelch/genética , Licopeno/farmacología , Factor 2 Relacionado con NF-E2/genética , ARN Neoplásico/genética , Neoplasias Cutáneas/prevención & control , Animales , Anticarcinógenos/farmacología , Autofagia , Proteína 1 Asociada A ECH Tipo Kelch/biosíntesis , Ratones , Factor 2 Relacionado con NF-E2/biosíntesis , ARN Neoplásico/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
17.
Oncotarget ; 8(34): 55920-55937, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915563

RESUMEN

NiaoDuQing (NDQ) granules, a traditional Chinese medicine, has been clinically used in China for over fourteen years to treat chronic kidney disease (CKD). To elucidate the mechanisms underlying the therapeutic benefits of NDQ, we designed an approach incorporating chemoinformatics, bioinformatics, network biology methods, and cellular and molecular biology experiments. A total of 182 active compounds were identified in NDQ granules, and 397 putative targets associated with different diseases were derived through ADME modelling and target prediction tools. Protein-protein interaction networks of CKD-related and putative NDQ targets were constructed, and 219 candidate targets were identified based on topological features. Pathway enrichment analysis showed that the candidate targets were mostly related to the TGF-ß, the p38MAPK, and the erythropoietin (EPO) receptor signaling pathways, which are known contributors to renal fibrosis and/or renal anemia. A rat model of CKD was established to validate the drug-target mechanisms predicted by the systems pharmacology analysis. Experimental results confirmed that NDQ granules exerted therapeutic effects on CKD and its comorbidities, including renal anemia, mainly by modulating the TGF-ß and EPO signaling pathways. Thus, the pharmacological actions of NDQ on CKD symptoms correlated well with in silico predictions.

18.
Pharmacol Res ; 119: 327-346, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28242334

RESUMEN

Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.


Asunto(s)
Anticarcinógenos/uso terapéutico , Fitoquímicos/uso terapéutico , Neoplasias Cutáneas/prevención & control , Piel/efectos de los fármacos , Animales , Anticarcinógenos/farmacología , Quimioprevención/métodos , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Fitoquímicos/farmacología , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
19.
J Cancer Res Clin Oncol ; 142(9): 1871-81, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26803314

RESUMEN

Transient receptor potential (TRP) cation channel superfamily plays critical roles in variety of processes, including temperature perception, pain transduction, vasorelaxation, male fertility, and tumorigenesis. One of seven families within the TRP superfamily of ion channels, the melastatin, or TRPM family comprises a group of eight structurally and functionally diverse channels. Of all the members of TRPM subfamily, TRPM8 is the most notable one. A lot of literatures have demonstrated that transient receptor potential melastatin 8 (TRPM8) could perform a myriad of functions in vertebrates and invertebrates alike. In addition to its well-known function in cold sensation, TRPM8 has an emerging role in a variety of biological systems, including thermoregulation, cancer, bladder function, and asthma. Recent studies have shown that TRPM8 is necessary to the initiation and progression of tumors, and the aberrant expression of TRPM8 was found in varieties of tumors, such as prostate tumor, melanoma, breast adenocarcinoma, bladder cancer, and colorectal cancer, making it a novel molecular target potentially useful in the diagnosis and treatment of cancer. This review outlines our current understanding on the role of TRPM8 in occurrence and development of different kinds of tumor and also includes discussion about the regulation of TRPM8 during carcinogenesis as well as therapeutic potential of targeting TRPM8 in tumor, which may be utilized for a potential pharmacological use as a target for anti-cancer therapy.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Femenino , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/genética , Neoplasias/patología , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...