Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(2): 264-278, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36593289

RESUMEN

Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.


Asunto(s)
ARN Largo no Codificante , Ratones , Animales , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Empalme del ARN , ARN Mensajero/genética , Encéfalo/metabolismo
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33973996

RESUMEN

Rhesus macaque is a unique nonhuman primate model for human evolutionary and translational study, but the error-prone gene models critically limit its applications. Here, we de novo defined full-length macaque gene models based on single molecule, long-read transcriptome sequencing in four macaque tissues (frontal cortex, cerebellum, heart and testis). Overall, 8 588 227 poly(A)-bearing complementary DNA reads with a mean length of 14 106 nt were generated to compile the backbone of macaque transcripts, with the fine-scale structures further refined by RNA sequencing and cap analysis gene expression sequencing data. In total, 51 605 macaque gene models were accurately defined, covering 89.7% of macaque or 75.7% of human orthologous genes. Based on the full-length gene models, we performed a human-macaque comparative analysis on polyadenylation (PA) regulation. Using macaque and mouse as outgroup species, we identified 79 distal PA events newly originated in humans and found that the strengthening of the distal PA sites, rather than the weakening of the proximal sites, predominantly contributes to the origination of these human-specific isoforms. Notably, these isoforms are selectively constrained in general and contribute to the temporospatially specific reduction of gene expression, through the tinkering of previously existed mechanisms of nuclear retention and microRNA (miRNA) regulation. Overall, the protocol and resource highlight the application of bioinformatics in integrating multilayer genomics data to provide an intact reference for model animal studies, and the isoform switching detected may constitute a hitherto underestimated regulatory layer in shaping the human-specific transcriptome and phenotypic changes.


Asunto(s)
Evolución Molecular , Poli A , Poliadenilación , Isoformas de ARN , ARN Mensajero/química , ARN Mensajero/genética , Transcripción Genética , Regiones no Traducidas 3' , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Macaca mulatta , Modelos Genéticos , Motivos de Nucleótidos , Especificidad de Órganos , Transporte de ARN , Especificidad de la Especie , Transcriptoma
3.
Cell Death Dis ; 10(6): 396, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113961

RESUMEN

Ca2+ oscillation is a system-level property of the cellular Ca2+-handling machinery and encodes diverse physiological and pathological signals. The present study tests the hypothesis that Ca2+ oscillations play a vital role in maintaining the stemness of liver cancer stem cells (CSCs), which are postulated to be responsible for cancer initiation and progression. We found that niche factor-stimulated Ca2+ oscillation is a signature feature of CSC-enriched Hep-12 cells and purified α2δ1+ CSC fractions from hepatocellular carcinoma cell lines. In Hep-12 cells, the Ca2+ oscillation frequency positively correlated with the self-renewal potential. Using a newly developed high signal, endoplasmic reticulum (ER) localized Ca2+ sensor GCaMP-ER2, we demonstrated CSC-distinctive oscillatory ER Ca2+ release controlled by the type 2 inositol 1,4,5-trisphosphate receptor (IP3R2). Knockdown of IP3R2 severely suppressed the self-renewal capacity of liver CSCs. We propose that targeting the IP3R2-mediated Ca2+ oscillation in CSCs might afford a novel, physiologically inspired anti-tumor strategy for liver cancer.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Madre Neoplásicas/metabolismo , Adenosina Trifosfato/farmacología , Animales , Línea Celular Tumoral , Autorrenovación de las Células , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Trasplante Heterólogo
4.
Genome Biol ; 20(1): 24, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712515

RESUMEN

BACKGROUND: Recent studies have revealed thousands of A-to-I RNA editing events in primates, but the origination and general functions of these events are not well addressed. RESULTS: Here, we perform a comparative editome study in human and rhesus macaque and uncover a substantial proportion of macaque A-to-I editing sites that are genomically polymorphic in some animals or encoded as non-editable nucleotides in human. The occurrence of these recent gain and loss of RNA editing through DNA point mutation is significantly more prevalent than that expected for the nearby regions. Ancestral state analyses further demonstrate that an increase in recent gain of editing events contribute to the over-representation, with G-to-A mutation site as a favorable location for the origination of robust A-to-I editing events. Population genetics analyses of the focal editing sites further reveal that a portion of these young editing events are evolutionarily significant, indicating general functional relevance for at least a fraction of these sites. CONCLUSIONS: Overall, we report a list of A-to-I editing events that recently originated through G-to-A mutations in primates, representing a valuable resource to investigate the features and evolutionary significance of A-to-I editing events at the population and species levels. The unique subset of primate editome also illuminates the general functions of RNA editing by connecting it to particular gene regulatory processes, based on the characterized outcome of a gene regulatory level in different individuals or primate species with or without these editing events.


Asunto(s)
Evolución Molecular , Macaca mulatta/genética , Edición de ARN , Animales , Humanos , Mutación
5.
Cell Death Dis ; 9(7): 719, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915260

RESUMEN

Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) poses a serious threat to the world's public health yet without a cure. Certain JEV-infected neural cells express a subset of previously identified intrinsic antiviral interferon stimulated genes (ISGs), indicating brain cells retain autonomous antiviral immunity. However, whether this happens in composited brain remains unclear. Human pluripotent stem cell (hPSC)-derived organoids can model disorders caused by human endemic pathogens such as Zika virus, which may potentially address this question and facilitate the discovery of a cure for JE. We thus generated telencephalon organoid and infected them with JEV. We found JEV infection caused significant decline of cell proliferation and increase of cell death in brain organoid, resulting in smaller organoid spheres. JEV tended to infect astrocytes and neural progenitors, especially the population representing outer radial glial cells (oRGCs) of developing human brain. In addition, we revealed variable antiviral immunity in brain organoids of different stages of culture. In organoids of longer culture (older than 8 weeks), but not of early ones (less than 4 weeks), JEV infection caused typical activation of interferon signaling pathway. Preferential infection of oRGCs and differential antiviral response at various stages might explain the much more severe outcomes of JEV infection in the younger, which also provide clues to develop effective therapeutics of such diseases.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/inmunología , Organoides/inmunología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/inmunología , Inmunidad Adaptativa/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/virología , Células Cultivadas , Cricetinae , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/virología , Humanos , Neurogénesis/fisiología , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/virología , Telencéfalo/citología , Telencéfalo/virología
6.
Mol Biol Evol ; 33(5): 1370-5, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26882984

RESUMEN

Although population genetics studies have significantly accelerated the evolutionary and functional interrogations of genes and regulations, limited polymorphism data are available for rhesus macaque, the model animal closely related to human. Here, we report the first genome-wide effort to identify and visualize the population genetics profile in rhesus macaque. On the basis of the whole-genome sequencing of 31 independent macaque animals, we profiled a comprehensive polymorphism map with 46,146,548 sites. The allele frequency for each polymorphism site, the haplotype structure, as well as multiple population genetics parameters were then calculated on a genome-wide scale. We further developed a specific interface, the RhesusBase PopGateway, to facilitate the visualization of these annotations, and highlighted the applications of this highly integrative platform in clarifying the selection signatures of genes and regulations in the context of the primate evolution. Overall, the updated RhesusBase provides a comprehensive monkey population genetics framework for in-depth evolutionary studies of human biology.


Asunto(s)
Macaca mulatta/genética , Animales , Evolución Biológica , China , Bases de Datos de Ácidos Nucleicos , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenómica/métodos , Metagenómica/normas , Análisis de Secuencia de ADN/métodos
7.
Mol Biol Evol ; 32(12): 3143-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26341297

RESUMEN

Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.


Asunto(s)
Macaca mulatta/genética , Edición de ARN , ARN Interferente Pequeño/biosíntesis , Análisis de Secuencia de ARN/métodos , Animales , Humanos , Macaca mulatta/metabolismo , Modelos Animales , ARN Interferente Pequeño/genética , Transcriptoma
8.
PLoS Genet ; 11(7): e1005391, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26177073

RESUMEN

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


Asunto(s)
Evolución Molecular , Genética de Población , Filogenia , ARN Largo no Codificante/genética , Animales , Secuencia Rica en GC/genética , Genoma Humano , Humanos , Macaca mulatta/genética , Sistemas de Lectura Abierta , Primates/genética , Empalme del ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA