Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825138

RESUMEN

Products of lipolysis released during digestion positively affect the metabolism of newborns. In contrast to the 3-layer biological membranes covering human milk (HM) fat, the lipid droplets in infant milk formula (IMF) are covered by a single membrane composed of casein and whey proteins. To reduce the differences in lipid structure between IMF and HM, studies have used milk fat globule membrane (MFGM) components such as milk polar lipids (MPL) to prepare emulsions mimicking HM fat globules However, few studies have elucidated the effect of membrane proteins (MP) on lipid digestion in infants. In this study, 3 kinds of emulsions were prepared: One with MPL as the interfaced of lipid droplets (RE-1), one with membrane protein concentrate (MPC) (RE-2) as the interface of lipid droplets, and one with both MPL and MPC (1:2) as the co-interface of lipid droplets (RE-3). The interfacial coverage of the emulsions was confirmed by measuring the contents of MPL and MPC at the lipid droplet interface, and by confocal laser scanning microscopy analyzed. By controlling the homogenization intensity, the specific surface area of lipid droplets was controlled at the same level among the 3 emulsions. The stability constants of the emulsions varied, and RE-1 was the most stable. During simulated in vitro infant gastrointestinal digestion, the amount of free fatty acids (FFA) released from the lipid droplets was significantly higher from those with MPC at the interface (RE-2, RE-3) than from that with MPL at the interface (RE-1). The amount of FFA released at the end of intestinal digestion of RE-1, RE-2, and RE-3 was 255.00 ± 3.54 µmol,328.75 ± 5.30 µmol, 298.50 ± 9.19 µmol, respectively. Compared with the lipid droplets in RE-2, those with MPL at the interface (RE-1, RE-3) released more unsaturated fatty acids (USFAs) during digestion. The emulsifying activity index was highest in RE-3 (MPL and MPC co-interface). The presence of MPL at the emulsion interface increased the release of USFAs, while the presence of MPC increased the release of FFA. These results show that both MPL and MP are indispensable in the construction of MFGM. Understanding their effects on digestion can provide new strategies for the development of infant foods.

2.
Poult Sci ; 103(8): 103789, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38833740

RESUMEN

This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased ß-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.

3.
Foods ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731730

RESUMEN

This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total of 42 volatile flavor compounds were identified in the bacon samples, and, during LTS, 11 key volatile flavor compounds with variable importance were found at a projection value of >1, including 2',4'-dihydroxyacetophenone, 4-methyl-2H-furan-5-one, Nonanal, etc. In total, 2017 proteins were quantified at different stages of LTS; correlation coefficients and KEGG analyses identified 27 down-regulated flavor-related proteins. Of these, seven were involved in the tricarboxylic acid (TCA) cycle, metabolic pathways, or amino acid metabolism, and they may be associated with the process of flavor formation. Furthermore, correlation coefficient analysis indicated that certain chemical parameters, such as the contents of free amino acids, carbonyl compounds, and TCA cycle components, were closely and positively correlated with the formation of key volatile flavor compounds. Combined with bioinformatic analysis, the results of this study provide insights into the proteins present in bacon at various stages of LTS. This study demonstrates the changes in proteins and the formation of volatile flavor compounds in bacon during LTS, along with their potential correlations, providing a theoretical basis for the development of green processing methods for Hunan bacon.

4.
Protein J ; 43(2): 351-361, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605203

RESUMEN

It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.


Asunto(s)
Glucólisis , Ratones Endogámicos ICR , Músculo Esquelético , Piruvato Quinasa , Animales , Glucólisis/efectos de los fármacos , Ratones , Piruvato Quinasa/metabolismo , Acetilación , Músculo Esquelético/metabolismo , Músculo Esquelético/enzimología , Línea Celular , Estrés Fisiológico , Epinefrina/metabolismo
5.
Anim Biosci ; 37(4): 697-708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37946427

RESUMEN

OBJECTIVE: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. METHODS: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. RESULTS: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. CONCLUSION: Dietary ELE improved meat quality and alleviated the negative effect of preslaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

6.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835963

RESUMEN

Effectively inhibiting the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) is crucial to human health. In the present study, chemical model systems were used to evaluate the inhibitory effects of seven hydrocolloids on HA and AGE formation. The results showed that hydrocolloids effectively inhibited the formation of two major AGEs. However, their inhibitory action against HA formation showed unexpected results, wherein alginic acid, carrageenan and konjac glucomannan promoted the formation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), harmane, norharmane and 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoline (MeIQx). Only chitosan and pectin showed significant inhibitory effects on HAs, reducing HA levels by 34.5-56.3% and 30.1-56.6%, respectively. In grilled beef patties, the addition of 1.5% chitosan and pectin significantly decreased AGE and HA content by 53.8-67.0% and 46.9-68.1%, respectively. Moreover, it had a limited impact on quality and sensory properties. Further mechanism studies conducted in model systems revealed that chitosan and pectin decreased the formation of key intermediates of AGEs and HAs. These findings suggest that chitosan and pectin are powerful inhibitors against AGE and HA formation with minimal impact on food quality. Therefore, their application in meat preparation and processing could effectively decrease human dietary exposure to HAs and AGEs.

7.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894898

RESUMEN

High glucose levels can lead to the apoptosis of islet ß cells, while autophagy can provide cytoprotection and promote autophagic cell death. Vitamin B12, a water-soluble B vitamin, has been shown to regulate insulin secretion and increase insulin sensitivity. However, the precise mechanism of action remains unclear. In this study, we investigated the influence of vitamin B12 on high glucose-induced apoptosis and autophagy in RIN-m5F cells to elucidate how vitamin B12 modulates insulin release. Our results demonstrate that exposure to 45 mM glucose led to a significant increase in the apoptosis rate of RIN-m5F cells. The treatment with vitamin B12 reduced the apoptosis rate and increased the number of autophagosomes. Moreover, vitamin B12 increased the ratio of microtubule-associated protein 1 light chain 3 beta to microtubule-associated protein 1 light chain 3 alpha (LC3-II/LC3-I), while decreasing the amount of sequestosome 1 (p62) and inhibiting the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under both normal- and high-glucose conditions. The additional experiments revealed that vitamin B12 inhibited high glucose-induced apoptosis. Notably, this protective effect was attenuated when the autophagy inhibitor 3-methyladenine was introduced. Our findings suggest that vitamin B12 protects islet ß cells against apoptosis induced by high glucose levels, possibly by inducing autophagy.


Asunto(s)
Glucosa , Vitamina B 12 , Vitamina B 12/farmacología , Glucosa/farmacología , Autofagia , Apoptosis , Proteínas Asociadas a Microtúbulos/metabolismo
8.
Foods ; 12(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37372565

RESUMEN

Carbon quantum dots (CQDs) from heat-treated foods show toxicity, but the mechanisms of toxicity and removal of CQDs have not been elucidated. In this study, CQDs were purified from roasted coffee beans through a process of concentration, dialysis and lyophilization. The physical properties of CQDs, the degree and mechanism of toxicity and the removal method were studied. Our results showed that the size of CQDs roasted for 5 min, 10 min and 20 min were about 5.69 ± 1.10 nm, 2.44 ± 1.08 nm and 1.58 ± 0.48 nm, respectively. The rate of apoptosis increased with increasing roasting time and concentration of CQDs. The longer the roasting time of coffee beans, the greater the toxicity of CQDs. However, the caspase inhibitor Z-VAD-FMK was not able to inhibit CQDs-induced apoptosis. Moreover, CQDs affected the pH value of lysosomes, causing the accumulation of RIPK1 and RIPK3 in lysosomes. Treatment of coffee beans with a pulsed electric field (PEF) significantly reduced the yield of CQDs. This indicates that CQDs induced lysosomal-dependent cell death and increased the rate of cell death through necroptosis. PEF is an effective way to remove CQDs from roasted coffee beans.

9.
Front Vet Sci ; 10: 1170573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143503

RESUMEN

For the purpose to improve meat quality, pigs were fed a normal diet (ND), a low protein diet (LPD) and a LPD supplemented with glycine (LPDG). Chemical and metabolomic analyses showed that LPD increased IMF deposition and the activities of GPa and PK, but decreased glycogen content, the activities of CS and CcO, and the abundance of acetyl-CoA, tyrosine and its metabolites in muscle. LPDG promoted muscle fiber transition from type II to type I, increased the synthesis of multiple nonessential amino acids, and pantothenic acid in muscle, which should contributed to the improved meat quality and growth rate. This study provides some new insight into the mechanism of diet induced alteration of animal growth performance and meat quality. In addition, the study shows that dietary supplementation of glycine to LPD could be used to improved meat quality without impairment of animal growth.

10.
Food Funct ; 14(9): 4006-4016, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039336

RESUMEN

As a class of bioactive and toxic compounds widely present in foodstuffs, the health effects of dietary exposure to ß-carboline heterocyclic amines (HAs) have not been elucidated. Based on our previous research that a typical ß-carboline HA (harmane) affects blood glucose metabolism and organ dysfunction, the present study mainly focused on the health effects of dietary exposure to harmane in diabetic Goto-Kakizaki (GK) rats. Twenty-four GK rats were administered daily with harmane (0.1 mg per kg body weight) for eight weeks. A comprehensive evaluation of the health effects of harmane was conducted on serum biochemistry, histopathology, and GC-TOF-MS-based metabolomics. The results showed that harmane exerts non-significant effects on the blood glucose metabolism of GK rats. However, it did cause pathological damage to gastrocnemius nerves and showed adverse effects on brain neurons by significantly activating astrocytes and downregulating brain-derived neurotrophic factor (BDNF), which are potential mechanisms related to the disruption of the normal glutamine-glutamate/γ-aminobutyric acid cycle. Moreover, an increased value of AST and urea, alterations in the amino acid, carbohydrate, purine, pyrimidine, and gut microbiota metabolism as well as the tricarboxylic acid (TCA) cycle could be associated with kidney, liver, and gut dysfunction. Our results suggest that given the role of harmane in nerve injury in GK rats, reducing the production and consumption of ß-carboline heterocyclic amines in our daily diets should be considered.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Ratas , Animales , Carbolinas/toxicidad , Glucemia , Dieta , Aminas/toxicidad
11.
Toxins (Basel) ; 15(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36828446

RESUMEN

N-glycolylneuraminic acid (Neu5Gc) is a specific factor in red meat that induces intestinal disease. Our aim was to investigate the effect of Neu5Gc on the intestinal barrier as well as its mechanism of endocytosis and exocytosis. Ten specific inhibitors were used to explore the mechanism of Neu5Gc endocytosis and exocytosis by Caco-2 cells. Amiloride hydrochloride and cytochalasin D had the strongest inhibitory effect on the endocytosis of Neu5Gc. Sodium azide, dynasore, chlorpromazine hydrochloride, and nystatin also inhibited Neu5Gc endocytosis. Dynasore exhibited a stronger inhibitory effect than that of chlorpromazine hydrochloride or nystatin alone. Exocytosis inhibitors, including nocodazole, brefeldin A, monensin, and bafilomycin A, inhibited the transmembrane transport of Neu5Gc. Monensin promoted the exocytosis of Neu5Gc from Caco-2 cells. In another experiment, we observed no significant inhibitory effects of monensin and brefeldin A. Dietary concentrations of Neu5Gc induced prominent damage to intestinal tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 and promoted the phosphorylation of IκB-α and P65 to activate the canonical Nuclear Factor kappa-B (NF-κB) pathway. Neu5Gc increased the RNA levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α and inhibited those of anti-inflammatory factors TGF-ß and IL-10. BAY, an NF-κB signaling pathway inhibitor, attenuated these changes. Reductions in the levels of ZO-1, occludin, and claudin-1 were recovered in response to BAY. Our data reveal the endocytosis and exocytosis mechanism of Neu5Gc and prove that Neu5Gc can activate the canonical NF-κB signaling pathway, regulate the transcription of inflammatory factors, thereby damaging intestinal barrier function.


Asunto(s)
Clorpromazina , FN-kappa B , Humanos , FN-kappa B/metabolismo , Células CACO-2 , Ocludina , Claudina-1/metabolismo , Brefeldino A/metabolismo , Brefeldino A/farmacología , Clorpromazina/metabolismo , Clorpromazina/farmacología , Monensina/metabolismo , Monensina/farmacología , Nistatina/metabolismo , Nistatina/farmacología , Transducción de Señal , Mucosa Intestinal
12.
Foods ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201140

RESUMEN

In the present study, citrus peels were extracted using various conventional and deep eutectic solvents (DESs). Compared to other citrus peel extracts, the DES extract based on choline chloride showed notably higher total phenolic and flavonoid content levels, along with superior antioxidant activity, among these extracts. Consequently, this study aimed to further investigate the inhibitory effects of the choline chloride based DES extract on the production of both free and bound heterocyclic amines (HAs) and advanced glycation end products (AGEs) in roast pork meat patties. The results indicated that the addition of choline chloride-based DES extracts, particularly the choline chloride-carbamide based DES extract, can effectively reduce the oxidation of lipids and proteins by quenching free radicals. This approach proves to be the most efficient in reducing the formation of both HAs and AGEs, leading to a significant reduction of 19.1-68.3% and 11.5-66.5% in free and protein-bound HAs, respectively. Moreover, the levels of free and protein-bound AGEs were reduced by 50.8-50.8% and 30.5-39.8%, respectively, compared to the control group. Furthermore, the major phenolics of citrus peel extract identified by UHPLC-MS were polymethoxylated flavonoids (PMFs) including hesperidin, isosinensetin, sinensetin, tetramethoxyflavone, tangeretin, and hexamethoxyflavone, which inferring that these compounds may be the main active ingredients responsible for the antioxidant activity and inhibition effects on the formation of HAs and AGEs. Further research is needed to explore the inhibitory effects and mechanisms of PMFs with different chemical structures on the formation of HAs and AGEs.

13.
Nutrients ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201955

RESUMEN

Western dietary patterns (WDP) and typical food groups may play a major role in the risk of behavioral health disorders. Nevertheless, the relationships between WDP, common food categories, and mental health disorders lack consistency and remain incompletely understood in relation to potential mechanisms. Therefore, the objective of the present study was conducted to synthesize available evidence linking WDP and typical food groups to these outcomes. Web of Science, PubMed, EMBASE, and MEDLINE were searched up to August 2023. Random effect meta-analyses were performed to obtain pooled odds ratio and the relative risk for the prevalence of outcomes and the incidence of outcomes, respectively. A total of 54 articles were included. WDP was associated with increased risk of both depression (1.19; 95% CI: 1.06-1.32) and depressive symptoms (1.20; 95% CI: 1.08-1.34). Except for high-fat dairy products, food groups are associated with an increased risk of anxiety, depression, and depressive symptoms. This review presents evidence to further understand the relationship between WDP, typical food groups, and the incidence of behavioral health disorders, and more randomized controlled trials and cohort studies are urgently required to confirm these findings and elucidate potential mechanisms.


Asunto(s)
Fenómenos Biológicos , Patrones Dietéticos , Humanos , Alimentos , Ansiedad/epidemiología , Trastornos de Ansiedad
14.
Metabolites ; 12(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355132

RESUMEN

Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.

15.
Food Funct ; 13(24): 12590-12601, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36385382

RESUMEN

The association between dietary meat consumption habits and neurodegenerative cognitive impairment (NCI) has been made but recent studies have reported controversial results. Herein, we have systematically explored associations between meat consumption and NCI risk. PubMed, Embase, and MEDLINE databases were explored for data sources of primary studies. Twenty-four prospective cohort studies that met the selection criteria, involving over 500 000 participants from 11 countries, were included. Relative risks (RRs) were pooled using random-effects model meta-analysis, and a dose-response analysis was conducted using a 2-stage generalized least-squares trend program. The results showed that total meat (RRs 1.14; 95% CI: 1.04-1.24), fish (RRs 0.87; 95% CI: 0.78-0.98), and poultry (RRs 0.88; 95% CI: 0.80-0.98) intake was significantly associated with NCI risk but red meat (RRs 1.03; 95% CI: 0.92-1.16) showed a non-significant association. Subgroup analysis further demonstrated a significant association between total meat consumption and the risk of NCI, especially for total processed meat (RRs 1.67; 95% CI, 1.46-1.92) and processed red meat (RRs 1.22; 95% CI, 1.11-1.34). Each additional 50 g day-1 intake of total meat (RRs 1.03; 95% CI: 1.00-1.05) and processed meat (RRs 1.12; 95% CI: 1.08-1.17) increased the risk of NCI. In contrast, a 50 g day-1 increment of fish (RRs 0.97; 95% CI: 0.94-0.99) and poultry (RRs 0.948; 95% CI: 0.90-0.99) intake was associated with lower NCI risk. This study provided evidence for further understanding the relationship between the type and amount of meat intake and the occurrence of NCI.


Asunto(s)
Disfunción Cognitiva , Carne Roja , Animales , Dieta , Conducta Alimentaria , Carne , Aves de Corral , Estudios Prospectivos , Factores de Riesgo
16.
Foods ; 11(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230008

RESUMEN

Previous studies have shown that emulsions with higher solid fat content (SFC) are related to a higher in-mouth coalescence level and fat-related perception. However, the effect of SFC in fat droplets on the fat-related attributes of emulsion-filled gels has not been fully elucidated. In this study, the effect of SFC on the creamy mouthfeel of acid milk gel was investigated. Five kinds of blended milk fats with SFC values ranging from 10.61% to 85.87% were prepared. All crystals in the blended milk fats were needle-like, but the onset melting temperature varied widely. Blended milk fats were then mixed with skim milk to prepare acid milk gels (EG10−EG85, fat content 3.0%). After simulated oral processing, the particle size distribution and confocal images of the gel bolus showed that the degree of droplet coalescence in descending order was EG40 > EG20 > EG60 > EG10 ≥ EG85. There was no significant difference in apparent viscosity measured at a shear rate of 50/s between bolus gels, but the friction coefficients measured at 20 mm/s by a tribological method were negatively correlated with the coalescence result. Furthermore, quantitative descriptive analysis and temporal dominance of sensations analysis showed that SFC significantly affected the ratings of melting, mouth coating, smoothness and overall creaminess, as well as the perceived sequence and the duration of melting, smoothness and mouth coating of acid milk gels. Overall, our study highlights the role of intermediate SFC in fat droplets on the creamy mouthfeel of acid milk gels, which may contribute to the development of low-fat foods with desirable sensory perception.

17.
Animals (Basel) ; 12(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35565563

RESUMEN

This study investigated the dietary supplementation of starches with different carbohydrate sources on the proximate composition, meat quality, flavor substances, and volatile flavor substances in the meat of Chinese Xiangxi yellow cattle. A total of 21 Chinese Xiangxi yellow steers (20 ± 0.5 months, 310 kg ± 5.85 kg) were randomly divided into three groups (control, corn, and barley groups), with seven steers per group. The control steers received a conventional diet (coarse forage type: whole silage corn at the end of the dough stage as the main source), the corn group received a diet with corn as the main carbohydrate source, and the barley group received a diet with barley as the main carbohydrate source. The experiment lasted for 300 d. and the means of the final weights in the control, corn, and barley groups were 290 kg, 359 kg, and 345 kg. The diets were isonitrogenous. The corn and barley groups reduced the moisture (p = 0.04) and improved the intramuscular fat content of the meat (p = 0.002). They also improved meat color (a*) (p = 0.01) and reduced cooking loss (p = 0.08), shear force (p = 0.002), and water loss (p = 0.001). There was no significant difference in the 5'-nucleotide content (p > 0.05), the equivalent umami concentration (EUC) (p = 0.88), and taste activity value (TAV) (p > 0.05) among the three groups. The 5'-IMP (umami) content was the highest in the 5'-nucleotide and its TAV > 1. The corn and barley groups improved the content of tasty amino acids (tAA, p < 0.001). The corn group had a higher content of sweet amino acids (SAA, p < 0.001) and total amino acids (TAA, p = 0.003). Corn and barley improved the levels of MUFA (p < 0.001), PUFA (p = 0.002), n-3 PUFA (p = 0.005), and n-6 PUFA (p = 0.020). The levels of alcohols, hydrocarbons, and aldehydes in the corn group were higher than in the barley and control groups (p < 0.001). The esters content in the corn group was higher than in the barley and control groups (p = 0.050). In conclusion, feeding corn or barley as a carbohydrate source can improve the nutrient content and taste. Feeding corn as a carbohydrate source can improve the content of free amino acids (Cys, Glu, Gly, Thr, Leu, Trp, Gln, Asn, and Asp), fatty acids (saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid, n-3PUFA, n-6PUFA, and total fatty acid), and volatile flavor substances (alcohols, aldehydes, acids, and hydrocarbons) to improve the flavor and meat quality.

18.
Animals (Basel) ; 12(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565587

RESUMEN

The objective of this study was to investigate meat quality of Xiangxi yellow cattle of different ages in comparison to Aberdeen Angus. At the ages of 6, 18, and 30 months, 10 female animals for both Xiangxi yellow cattle and Aberdeen Angus cattle were randomly selected and slaughtered. The proximate composition analysis, fatty acid profiles and flavor compounds were measured on the longissimus thoracis (LT) muscle samples. One boneless loin chop was dissected and used for sensory evaluation by a 10-persoon trained taste panel. The data obtained showed that Xiangxi yellow cattle deposited similarly high level of intramuscular fat as Angus at the age of 18 month and the polyunsaturated fatty acid in muscle along with the PUFA/SFA ratio reached the highest levels at this age. Inosine 5'-monophosphate (IMP) was the predominant umami compound in beef, which concentration was significantly higher (p < 0.05) at month 18, but not different between Angus and Xiangxi yellow cattle. Multiple volatile flavor compounds were higher (p < 0.05) in concentrations in meat from Xiangxi yellow cattle at ages of 18 and 30 months when compared to Angus. Sensory analysis revealed that Xiangxi yellow cattle (18 and 30 months) and Angus (30 months) were superior in meat overall eating quality to Xiangxi yellow cattle (6 months) and Angus (6 and 18 months). This study showed that Xiangxi yellow cattle are a fine cattle breed with equal or even better meat quality attributes when compared to Angus. It is proper to slaughter Xiangxi yellow cattle at the age of 18 months for high quality beef production.

19.
Food Funct ; 13(10): 5515-5527, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35522130

RESUMEN

The present study aimed to investigate the metabolic perturbations and health impact of the co-accumulation of Maillard reaction products (MRPs), including acrylamide, harmane, and Nε-(carboxymethyl)lysine (CML), via serum biochemical and histopathological examinations as well as metabolomic analysis. Sprague-Dawley rats were treated with acrylamide (2 mg per kg body weight [bw]), harmane (1 mg per kg bw), CML (2 mg per kg bw), and combinations of these MRPs. Harmane did not cause adverse effects on the health of rats, whereas acrylamide and CML resulted in significantly (P < 0.05) decreased insulin sensitivity (HOMA-IR > 1), increased oxidative stress levels, and pathological injuries to the pancreas, liver, and gastrocnemius. Owing to the antioxidant and anti-diabetic activities of harmane, the effects of the combination of the MRPs on oxidative stress levels, blood glucose metabolism, and pathological injuries to the pancreas and gastrocnemius were relieved. However, new health problems, including pathological injury of the kidneys and increased cancer risk, were observed. Metabolomic analysis revealed that this may be related to the effects of MRPs on the arginine biosynthesis pathway, which resulted in the abnormal metabolism of fumaric acid and the tricarboxylic acid cycle. These results indicated that the mechanisms of the combined effect of MRPs and their effects on health cannot be predicted from the effects of individual MRPs.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Acrilamida/análisis , Animales , Peso Corporal , Productos Finales de Glicación Avanzada/análisis , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
20.
J Agric Food Chem ; 70(14): 4445-4456, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364817

RESUMEN

Acrylamide is a toxic compound that is produced widely during food processing, but whether the daily dietary consumption of acrylamide can impair the cognitive dysfunction in diabetic individuals and the potential underlying mechanisms are unknown. The aim of the present study was to observe the changes in cognitive and memory performance caused by chronic acrylamide exposure and to evaluate its influence on the brain morphology, oxidative damage, neuroinflammation, and brain metabolic disturbance. Goto-Kakizaki (GK) rats, a rat model of diabetes, were orally administered acrylamide at 1 mg/kg body weight for 8 weeks. The results of the novel object recognition and Y-maze tests showed that the consumption of acrylamide significantly aggravated diabetes-associated cognitive dysfunction in GK rats. Acrylamide increased reactive oxygen species and malondialdehyde formation and reduced glutathione levels, catalase, and total antioxidant capacity activity, which caused a succession of events associated with oxidative damage, including glial cell activation. After the activation of astrocytes and microglia, related cytokines, including interleukin-1ß, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide, were released, amyloid ß-protein was accumulated, brain-derived neurotrophic factor was decreased, and the expression of caspase-3 and caspase-9 was increased, which aggravated neuroinflammation. Furthermore, there was perturbation of some important metabolites, including glutamic acid, citric acid, pyruvic acid, lactate, and sphinganine, and their related glucose, amino acid, and energy metabolism pathways in the brain. This work helps to demonstrate the effect of consumption of acrylamide in the daily diet on diabetes-associated cognitive dysfunction and its underlying mechanisms.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Enfermedades Metabólicas , Acrilamida/toxicidad , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/metabolismo , Disfunción Cognitiva/etiología , Exposición Dietética , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...