Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
Ophthalmol Ther ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834934

RESUMEN

INTRODUCTION: Dichoptic training has emerged as a promising rehabilitation approach for improving binocular visual function in patients with strabismus. A prospective observational study design was employed to assess the effectiveness of online video game-based dichoptic training in rehabilitating binocular visual function in patients who had undergone an operation for intermittent exotropia. METHODS: A total of 64 patients who had undergone an operation for intermittent exotropia were recruited and divided into the training group and the control group based on whether they would receive the dichoptic training. The dichoptic training was conducted for 3 months in the training group and the control group would not accept any form of orthoptic therapy. Assessments of binocular visual functions and deviation were conducted at baseline, 3-month and 6-month follow-up. RESULTS: Twenty-nine participants in the training group (mean 9.69 ± 2.66 years old) and 26 participants in the control group (mean 8.41 ± 2.64 years old) completed follow-up. At both 3- and 6-month follow-ups, the training group showed superior distance stereopsis compared to the control group, with near stereopsis only showing significant difference at the 6-month follow-up. Additionally, the training group exhibited significantly less distance exo-deviation drift than the control group at these times, and no significant difference was observed in near exo-deviation drift between the groups. The control group had a significantly higher rate of suboptimal surgical outcomes at both the 3- and 6-month follow-up. However, no significant differences were observed in simultaneous perception and fusion functions between the two groups. CONCLUSIONS: Online video game-based dichoptic training has the potential to become a novel postoperative rehabilitation strategy for patients with intermittent exotropia.

2.
Angew Chem Int Ed Engl ; : e202409018, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856227

RESUMEN

Conjugated polymers are emerging as competitive candidates for organic thermoelectrics (OTEs). However, to make the device truly pervasive, both p- and n-type conjugated polymers are essential. Despite great efforts, no n-type equivalents to the p-type benchmark PEDOT:PSS exist to date mainly due to the low electrical conductivity (σ). Herein, a near-amorphous n-type conjugated polymer, namely pDFSe, is reported with high σ by achieving the synergy between charge transport and doping efficiency. The polymer pDFSe is synthesized based on an acceptor-triad moiety of diketopyrrolopyrrole-difluorobenzoselenadiazole-diketopyrrolopyrrole (DFSe), which has the noncovalently-fused-ring structure to reinforce the backbone rigidity. Furthermore, an axisymmetric thiophene-selenophene-thiophene donor is introduced, which enables the formation of near-amorphous microstructures. The above merits ensure good doping efficiency without scarifying efficient intrachain charge-carrier transport. Thus, pDFSe-based n-type transistors exhibit high electron mobility up to 6.15 cm2 V-1 s-1, much higher than its reference polymer pDSe without the noncovalently-fused-ring structure (0.77 cm2 V-1 s-1). Further upon n-doping, pDFSe demonstrates excellent σ of 62.6 S cm-1 and maximum power factor of 133.1 µW m-1 K-2, which are among the highest values reported for solution-processed n-type polymers. The results demonstrate the great potential of near-amorphous n-type conjugated polymers with noncovalently-fused-ring structure for the next-generation OTEs.

3.
Angew Chem Int Ed Engl ; : e202402496, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863241

RESUMEN

Promoting the hydrogen oxidation reaction (HOR) activity and poisoning tolerance of electrocatalysts is crucial for the large-scale application of hydrogen-oxygen fuel cell. However, it is severely hindered by the scaling relations among different intermediates. Herein, lattice-contracted Pt-Rh in ultrasmall ternary L12-(Pt0.9Rh0.1)3V intermetallic nanoparticles (~2.2 nm) were fabricated to promote the HOR performances through an oxides self-confined growth strategy. The prepared (Pt0.9Rh0.1)3V displayed 5.5/3.7 times promotion in HOR mass/specific activity than Pt/C in pure H2 and dramatically limited activity attenuation in 1000 ppm CO/H2 mixture. In-situ Raman spectra tracked the superior anti-CO* capability as a result of compressive strained Pt, and the adsorption of oxygen-containing species was promoted due to the dual-functional effect. Further assisted by density functional theory calculations, both the adsorption of H* and CO* on (Pt0.9Rh0.1)3V were reduced compared with that of Pt due to lattice contraction, while the adsorption of OH* was enhanced by introducing oxyphilic Rh sites. This work provides an effective tactic to stimulate the electrocatalytic performances by optimizing the adsorption of different intermediates severally.

4.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38797969

RESUMEN

In recent decades, antibodies have emerged as indispensable therapeutics for combating diseases, particularly viral infections. However, their development has been hindered by limited structural information and labor-intensive engineering processes. Fortunately, significant advancements in deep learning methods have facilitated the precise prediction of protein structure and function by leveraging co-evolution information from homologous proteins. Despite these advances, predicting the conformation of antibodies remains challenging due to their unique evolution and the high flexibility of their antigen-binding regions. Here, to address this challenge, we present the Bio-inspired Antibody Language Model (BALM). This model is trained on a vast dataset comprising 336 million 40% nonredundant unlabeled antibody sequences, capturing both unique and conserved properties specific to antibodies. Notably, BALM showcases exceptional performance across four antigen-binding prediction tasks. Moreover, we introduce BALMFold, an end-to-end method derived from BALM, capable of swiftly predicting full atomic antibody structures from individual sequences. Remarkably, BALMFold outperforms those well-established methods like AlphaFold2, IgFold, ESMFold and OmegaFold in the antibody benchmark, demonstrating significant potential to advance innovative engineering and streamline therapeutic antibody development by reducing the need for unnecessary trials. The BALMFold structure prediction server is freely available at https://beamlab-sh.com/models/BALMFold.


Asunto(s)
Anticuerpos , Anticuerpos/química , Anticuerpos/inmunología , Biología Computacional/métodos , Conformación Proteica , Humanos , Modelos Moleculares , Aprendizaje Profundo
5.
Sci Adv ; 10(22): eadj3760, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820164

RESUMEN

Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT10@AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m-2 hour-1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.

6.
Chin Med ; 19(1): 67, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720376

RESUMEN

BACKGROUND: Thesium chinense Turcz. (Named as Bai Rui Cao in Chinese) and its preparations (e.g., Bairui Granules) have been used to treat inflammatory diseases, such as acute mastitis, lobar pneumonia, tonsillitis, coronavirus disease 2019 (COVID-19), and upper respiratory tract infection. However, the material basis, pharmacological efficiency, and safety have not been illustrated. METHODS: Anti-inflammatory activity-guided isolation of constituents has been performed using multiple column chromatography, and their structures were elucidated by NMR spectroscopy and ECD calculations. The inhibitory effects on lung inflammation and safety of the crude ethanol extract (CE), Bairui Granules (BG), and the purified active constituents were evaluated using lipopolysaccharide (LPS)-stimulated acute lung inflammation (ALI) mice model or normal mice. RESULTS: Seven new compounds (1-7) and fifty-six known compounds (8-63) were isolated from T. chinense, and fifty-four were reported from this plant for the first time. The new flavonoid glycosides 1-2, new fatty acids 4-5, new alkaloid 7 as well as the known constituents including flavonoid aglycones 8-11, lignans 46-54, alkaloids 34 and 45, coumarins 57, phenylpropionic acids 27, and simple aromatic compounds 39, 44 and 58 exhibited anti-inflammatory activity. Network pharmacology analysis indicated that anti-inflammation of T. chinense was attributed to flavonoids and alkaloids by regulating inflammation-related proteins (e.g., TNF, NF-κB, TGF-ß). Furthermore, constituents of T. chinense including kaempferol-3-O-glucorhamnoside (KN, also named as Bairuisu I, 19), astragalin (AG, Bairuisu II, 12), and kaempferol (KF, Bairuisu III, 8), as well as CE and BG could alleviate lung inflammation caused by LPS in mice by preventing neutrophils infiltration and the expression of the genes for pro-inflammatory cytokines NLRP3, caspase-1, IL-1ß, and COX-2. After a 28-day subacute toxicity test, BG at doses of 4.875 g/kg and 9.750 g/kg (equivalent to onefold and twofold the clinically recommended dose) and CE at a dose of 11.138 g/kg (equivalent to fourfold the clinical dose of BG) were found to be safe and non-toxic. CONCLUSIONS: The discovery of sixty-three constituents comprehensively illustrated the material basis of T. chinense. T. chinense and Bairui Granules could alleviate lung inflammation by regulating inflammation-related proteins and no toxicity was observed under the twofold of clinically used doses.

7.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731438

RESUMEN

It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.

8.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782919

RESUMEN

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Asunto(s)
ARN Helicasas DEAD-box , Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Humanos , Ratones , Apoptosis/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Homeostasis/genética , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
9.
Phytochemistry ; 223: 114131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705264

RESUMEN

Four undescribed homoisoflavanoids (1-4), one homoflavonoid (5), ten dibenzoxocin derivatives (6a-10a and 6b-10b), one dibenzoxocin-derived phenolic compound (11), one diterpenoid (13), three aliphatic dicarboxylic acid derivatives (14-16), together with the known diterpenoid 12-O-ethylneocaesalpin B (12) were obtained from the branches and leaves of Hultholia mimosoides. Their structures were elucidated by extensive spectroscopic techniques. Notably, each of the dibenzoxocins 6-10 existed as a pair of interconvertible atropisomers and the conformation for these compounds was clarified by NMR and ECD analyses. Protosappanin F (11) was a previously undescribed dibenzoxocin-derived compound in which one of the benzene rings was hydrogenated to a polyoxygenated cyclohexane ring and an ether linkage was established between C-6 and C-12a. The isolated polyphenols were tested for induction of quinone reductase and compounds 3 and 8 showed potent QR-inducing activity in Hepa-1c1c7 cells.


Asunto(s)
Antioxidantes , Hojas de la Planta , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Estructura Molecular , Salicaceae/química , Tallos de la Planta/química
10.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698063

RESUMEN

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Asunto(s)
Flavanonas , Leucemia Monocítica Aguda , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Flavanonas/farmacología , Humanos , Leucemia Monocítica Aguda/tratamiento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células THP-1 , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
11.
Theor Appl Genet ; 137(5): 113, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678511

RESUMEN

KEY MESSAGE: The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.


Asunto(s)
Aegilops , Mapeo Cromosómico , Resistencia a la Enfermedad , Genes de Plantas , Puccinia , Aegilops/genética , Aegilops/microbiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Introgresión Genética , Ligamiento Genético , Marcadores Genéticos , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Puccinia/fisiología , Triticum/genética , Triticum/microbiología
12.
MedComm (2020) ; 5(4): e526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606361

RESUMEN

Malnutrition is a prevalent and severe issue in hospitalized patients with chronic diseases. However, malnutrition screening is often overlooked or inaccurate due to lack of awareness and experience among health care providers. This study aimed to develop and validate a novel digital smartphone-based self-administered tool that uses facial features, especially the ocular area, as indicators of malnutrition in inpatient patients with chronic diseases. Facial photographs and malnutrition screening scales were collected from 619 patients in four different hospitals. A machine learning model based on back propagation neural network was trained, validated, and tested using these data. The model showed a significant correlation (p < 0.05) and a high accuracy (area under the curve 0.834-0.927) in different patient groups. The point-of-care mobile tool can be used to screen malnutrition with good accuracy and accessibility, showing its potential for screening malnutrition in patients with chronic diseases.

13.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588611

RESUMEN

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Asunto(s)
Chaperonina 60 , Cardiopatías Congénitas , Animales , Ratones , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatías Congénitas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo
15.
Sci Rep ; 14(1): 9831, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684780

RESUMEN

Climate change is a serious environmental issue appearing in China. As a public service institution operating around the clock, the negative impact of hospitals on the environment is evident, promoting their workers' pro-environmental behavior (PEB) through increasing climate change health risk perception (CHRP) is an effective method to protect the environment and achieve sustainable development. This study investigates how CHRP shapes pro-environmental attitude (PEA), pro-environmental intention (PEI), and pro-environmental behavior (PEB) among hospital workers. Using structural equation modeling (SEM) to determine the chain of causation from CHRP to PEB among hospital workers. The result shows that CHRP positively affects PEA and PEI, and PEI positively affects their PEB. In addition, although CHRP has no significant direct effect on PEB, it can play a crucial indirect effect through the mediating role of PEI. Moreover, the result of multiple regression shows that there are significant differences regarding PEA, PEI, and PEB.


Asunto(s)
Cambio Climático , Intención , Humanos , Masculino , China , Femenino , Adulto , Percepción , Encuestas y Cuestionarios , Actitud
16.
Small ; : e2310072, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470190

RESUMEN

Flexible wearable sensors recently have made significant progress in human motion detection and health monitoring. However, most sensors still face challenges in terms of single detection targets, single application environments, and non-recyclability. Lipoic acid (LA) shows a great application prospect in soft materials due to its unique properties. Herein, ionic conducting elastomers (ICEs) based on polymerizable deep eutectic solvents consisting of LA and choline chloride are prepared. In addition to the good mechanical strength, high transparency, ionic conductivity, and self-healing efficiency, the ICEs exhibit swelling-strengthening behavior and enhanced adhesion strength in underwater environments due to the moisture-induced association of poly(LA) hydrophobic chains, thus making it possible for underwater sensing applications, such as underwater communication. As a strain sensor, it exhibits highly sensitive strain response with repeatability and durability, enabling the monitoring of both large and fine human motions, including joint movements, facial expressions, and pulse waves. Furthermore, due to the enhancement of ion mobility at higher temperatures, it also possesses excellent temperature-sensing performance. Notably, the ICEs can be fully recycled and reused as a new strain/temperature sensor through heating. This study provides a novel strategy for enhancing the mechanical strength of poly(LA) and the fabrication of multifunctional sensors.

17.
Burns ; 50(5): 1277-1285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490836

RESUMEN

BACKGROUND: Several models predicting mortality risk of burn patients have been proposed. However, models that consider all such patients may not well predict the mortality of patients with extensive burns. METHOD: This retrospective multicentre study recruited patients with extensive burns (≥ 50% of the total body surface area [TBSA]) treated in three hospitals of Eastern China from 1 January 2016 to 30 June 2022. The performances of six predictive models were assessed by drawing receiver operating characteristic (ROC) and calibration curves. Potential predictors were sought via "least absolute shrinkage and selection operator" regression. Multivariate logistic regression was employed to construct a predictive model for patients with burns to ≥ 50% of the TBSA. A nomogram was prepared and the performance thereof assessed by reference to the ROC, calibration, and decision curves. RESULT: A total of 465 eligible patients with burns to ≥ 50% TBSA were included, of whom 139 (29.9%) died. The FLAMES model exhibited the largest area under the ROC curve (AUC) (0.875), followed by the models of Zhou et al. (0.853) and the ABSI model (0.802). The calibration curve of the Zhou et al. model fitted well; those of the other models significantly overestimated the mortality risk. The new nomogram includes four variables: age, the %TBSA burned, the area of full-thickness burns, and blood lactate. The AUCs (training set 0.889; internal validation set 0.934; external validation set 0.890) and calibration curves showed that the nomogram exhibited an excellent discriminative capacity and that the predictions were very accurate. CONCLUSION: For patients with burns to ≥ 50%of the TBSA, the Zhou et al. and FLAMES models demonstrate relatively high predictive ability for mortality. The new nomogram is sensitive, specific, and accurate, and will aid rapid clinical decision-making.


Asunto(s)
Superficie Corporal , Quemaduras , Nomogramas , Curva ROC , Humanos , Quemaduras/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , China/epidemiología , Modelos Logísticos , Medición de Riesgo/métodos , Anciano , Área Bajo la Curva , Adulto Joven
18.
Front Pharmacol ; 15: 1372527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523644

RESUMEN

Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.

19.
Hum Genet ; 143(3): 385-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38502355

RESUMEN

A certain proportion of genes are regulated by multiple, distinct promoters, revealing a dynamic landscape of the cancer transcriptome. However, the contribution of alternative promoters (APs) in breast cancer (BRCA) remains largely unexplored. Here, we identified 3654 genes with multiple promoters in BRCA patients, and 53 of them could generate distinct AP transcripts that are dysregulated and prognosis-related in BRCA, namely prognosis-related dysregulated AP (prdeAP) transcripts. Interestingly, when we searched for the genomic signatures of these prdeAP genes, we found that the promoter regions of 92% of the prdeAP genes were enriched with abundant DNA methylation signals. Through further bioinformatic analysis and experimental validation, we showed that AP selections of TANK, UNKL, CCL28, and MAP1LC3A were regulated by DNA methylation upon their corresponding promoter regions. Functionally, by overexpressing AP variants of TANK, we found that TANK|55731 could dramatically suppress MDA-MB-231 cell proliferation and migration. Meanwhile, pan-cancer survival analyses suggested that AP variants of TANK provided more accurate prognostic predictive ability than TANK gene in a variety of tumor types, including BRCA. Together, by uncovering the DNA methylation-regulated AP transcripts with tumor prognostic features, our work revealed a novel layer of regulators in BRCA progression and provided potential targets that served as effective biomarkers for anti-BRCA treatment.


Asunto(s)
Neoplasias de la Mama , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Pronóstico , Estudio de Asociación del Genoma Completo , Línea Celular Tumoral , Proliferación Celular/genética , Transcriptoma
20.
Plant Methods ; 20(1): 43, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493140

RESUMEN

BACKGROUND: Dendrobium officinale is a medicinal plant with high commercial value. The Dendrobium officinale market in Yunnan is affected by the standardization of medicinal material quality control and the increase in market demand, mainly due to the inappropriate harvest time, which puts it under increasing resource pressure. In this study, considering the high polysaccharide content of Dendrobium leaves and its contribution to today's medical industry, (Fourier Transform Infrared Spectrometer) FTIR combined with chemometrics was used to combine the yields of both stem and leaf parts of Dendrobium officinale to identify the different harvesting periods and to predict the dry matter content for the selection of the optimal harvesting period. RESULTS: The Three-dimensional correlation spectroscopy (3DCOS) images of Dendrobium stems to build a (Split-Attention Networks) ResNet model can identify different harvesting periods 100%, which is 90% faster than (Support Vector Machine) SVM, and provides a scientific basis for modeling a large number of samples. The (Partial Least Squares Regression) PLSR model based on MSC preprocessing can predict the dry matter content of Dendrobium stems with Factor = 7, RMSE = 0.47, R2 = 0.99, RPD = 8.79; the PLSR model based on SG preprocessing can predict the dry matter content of Dendrobium leaves with Factor = 9, RMSE = 0.2, R2 = 0.99, RPD = 9.55. CONCLUSIONS: These results show that the ResNet model possesses a fast and accurate recognition ability, and at the same time can provide a scientific basis for the processing of a large number of sample data; the PLSR model with MSC and SG preprocessing can predict the dry matter content of Dendrobium stems and leaves, respectively; The suitable harvesting period for D. officinale is from November to April of the following year, with the best harvesting period being December. During this period, it is necessary to ensure sufficient water supply between 7:00 and 10:00 every day and to provide a certain degree of light blocking between 14:00 and 17:00.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA