Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8032, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271649

RESUMEN

Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation. The transcriptional regulator PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and the histone H3K27-demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) are identified as being required for this shade avoidance memory. RNA-sequencing analysis reveals that shade induction of shade-memory-related genes is impaired in the pif7 and ref6 mutants. Based on the analyses of enrichments of H3K27me3, REF6 and PIF7, we find that priming shade treatment induces PIF7 accumulation, which further recruits REF6 to demethylate H3K27me3 on the chromatin of certain shade-memory-related genes, leading to a state poised for their transcription. Upon a second shade treatment, enhanced shade-mediated inductions of these genes result in stronger hypocotyl growth responses. We conclude that the transcriptional memory mediated by epigenetic modification plays a key role in the ability of primed plants to remember previously experienced shade and acquire enhanced responses to recurring shade conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutación , Factores de Transcripción/metabolismo
2.
Cell Rep ; 43(2): 113726, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308844

RESUMEN

Warm ambient conditions induce thermomorphogenesis and affect plant growth and development. However, the chromatin regulatory mechanisms involved in thermomorphogenesis remain largely obscure. In this study, we show that the histone methylation readers MORF-related gene 1 and 2 (MRG1/2) are required to promote hypocotyl elongation in response to warm ambient conditions. A transcriptome sequencing analysis indicates that MRG1/2 and phytochrome interacting factor 4 (PIF4) coactivate a number of thermoresponsive genes, including YUCCA8, which encodes a rate-limiting enzyme in the auxin biosynthesis pathway. Additionally, MRG2 physically interacts with PIF4 to bind to thermoresponsive genes and enhances the H4K5 acetylation of the chromatin of target genes in a PIF4-dependent manner. Furthermore, MRG2 competes with phyB for binding to PIF4 and stabilizes PIF4 in planta. Our study indicates that MRG1/2 activate thermoresponsive genes by inducing histone acetylation and stabilizing PIF4 in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Histonas , Vernalización , Arabidopsis/genética , Cromatina , Metilación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Cromosómicas no Histona
3.
New Phytol ; 239(1): 189-207, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129076

RESUMEN

The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ensamble y Desensamble de Cromatina , Chaperonas de Histonas , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
EMBO J ; 42(8): e111472, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36912149

RESUMEN

For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor VII/genética , Fitocromo/genética , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ADN/metabolismo
5.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3223-3231, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511360

RESUMEN

Analyzing the pattern of altitudinal variation in the leaf traits and their networks of a particular tree species of similar age and its influencing factors could contribute to understanding the impacts of environmental factors on leaf traits and excluding the interference of genetic factors. We investigated the stomatal, structural, chemical, and vein traits of Daphniphyllum macropodum leaves in middle-aged forests, following the altitudinal gradient (1100, 1500, and 1900 m) on Mao'er Mountain. The objectives of this study were to reveal patterns in leaf trait and leaf trait networks variation, the life strategy of the tree species, and the major environmental factors affecting the altitudinal variations. The results showed that leaf area, specific leaf area, leaf thickness, leaf dry matter content, chlorophyll content, nitrogen content, phosphorus content, C:N, C:P, vein density, and vein diameter varied significantly across altitudes. Mean annual temperature and total radiation explained 42.1% and 16.2% of leaf-trait variation, respectively. They served as key environmental factors driving the altitudinal variation in leaf traits. Mean annual temperature exhibited the greatest influence on leaf area (R2=0.73), and total radiation exerted the most prominent effect on leaf thickness (R2=0.72). Both relationships were significantly positive. D. macropodum exhibited low leaf nitrogen and phosphorus at the low altitude of 1100 m, and the overall and local trait networks were loose, adopting a conservative resource strategy. At the medium altitude of 1500 m, leaf nutrient contents were relatively high. The overall network of leaf traits was tightly connected and local network was loose. By enhancing the dependency among leaf traits, and improving phosphorus utilization efficiency, D. macropodum could cope with competition in deciduous forests and adopt resource acquisition strategies. Further, at the highest altitude of 1900 m, D. macropodum had relatively large leaf thickness, chlorophyll content, and leaf dry matter content, but relatively small leaf area. The local network connections were tight while the overall network looseness, indicating a resource conserving strategy. The trade-off relationship between C:P and leaf phosphorus content was closely related to phosphorus use efficiency, and its variation was an important indicator for identifying life strategies of D. macropodum in different altitudes.


Asunto(s)
Daphniphyllum , Árboles , China , Nitrógeno , Fósforo , Clorofila , Hojas de la Planta
6.
Front Plant Sci ; 13: 986940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262654

RESUMEN

As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.

7.
Nat Commun ; 13(1): 5636, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163360

RESUMEN

METTL4 belongs to a subclade of MT-A70 family members of methyltransferase (MTase) proteins shown to mediate N6-adenosine methylation for both RNA and DNA in diverse eukaryotes. Here, we report that Arabidopsis METTL4 functions as U2 snRNA MTase for N6-2'-O-dimethyladenosine (m6Am) in vivo that regulates flowering time, and specifically catalyzes N6-methylation of 2'-O-methyladenosine (Am) within a single-stranded RNA in vitro. The apo structures of full-length Arabidopsis METTL4 bound to S-adenosyl-L-methionine (SAM) and the complex structure with an Am-containing RNA substrate, combined with mutagenesis and in vitro enzymatic assays, uncover a preformed L-shaped, positively-charged cavity surrounded by four loops for substrate binding and a catalytic center composed of conserved residues for specific Am nucleotide recognition and N6-methylation activity. Structural comparison of METTL4 with the mRNA m6A enzyme METTL3/METTL14 heterodimer and modeling analysis suggest a catalytic mechanism for N6-adenosine methylation by METTL4, which may be shared among MT-A70 family members.


Asunto(s)
Arabidopsis , Metiltransferasas , Adenosina/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación , Metiltransferasas/metabolismo , Nucleótidos/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , S-Adenosilmetionina/metabolismo
8.
Nat Plants ; 8(9): 1108-1117, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995835

RESUMEN

MYB and basic helix-loop-helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB-bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB-bHLH complexes (WER-EGL3, CPC-EGL3 and MYB29-MYC3), uncovering two MYB-bHLH interaction modes. WER and CPC are R2R3- and R3-type MYBs, respectively, but interact with EGL3 through their N-terminal R3 domain in a similar mode. A single amino acid of CPC, Met49, is crucial for competition with WER to interact with EGL3. MYB29, a R2R3-type MYB transcription factor, interacts with MYC3 by its C-terminal MYC-interaction motif. The WER-EGL3 and MYB29-MYC3 binding modes are widely applied among MYB-bHLH complexes in Arabidopsis and evolve independently in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Cell ; 34(3): 1100-1116, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954802

RESUMEN

Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes. A variety of inducible genes, including several important genes in the salicylic acid (SA) and jasmonic acid (JA) pathways, were transcriptionally upregulated in the chr19 mutant under normal growth conditions, indicative of a role of CHR19 in transcriptional repression. In addition, the chr19 mutation triggered higher susceptibility to the JA pathway-defended necrotrophic fungal pathogen Botrytis cinerea, but did not affect the growth of the SA pathway-defended hemibiotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Expression of CHR19 was tissue-specific and inhibited specifically by SA treatment. Such inhibition significantly decreased the local chromatin enrichment of CHR19 at the associated SA pathway genes, which resulted in their full activation upon SA treatment. Overall, our findings clarify CHR19 to be a novel regulator acting at the chromatin level to impact the transcription of genes underlying plant resistance to different pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/genética , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Bone Oncol ; 30: 100385, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34401227

RESUMEN

BACKGROUND: Ewing sarcoma (ES) of bone is accounting for the second most common type of primary bone cancer in children and adolescents. However, the patterns of distant metastasis (DM) and the effect of the sites of DM on survival outcomes were not investigated. AIMS: This study aimed to investigate the patterns of DM and the prognostic factors related to outcomes in primary metastatic ES of the bone. METHODS: Patients who were diagnosed with primary metastatic ES between 2010 and 2018 were identified from the Surveillance, Epidemiology, and End Results database. Kaplan-Meier analysis, log-rank tests, and Cox proportional-hazards regression models were used for statistical analyses. RESULTS: We identified 277 patients in this study and 95.3% of them (n = 264) receiving chemotherapy. A total of 371 sites of DM were observed. Lung was the most common distant metastatic site (n = 182, 49.1%), followed by bone (n = 139, 37.5%), distant lymph node (n = 26, 7.0%), liver (n = 14, 3.8%), and brain (n = 10, 2.7%). Three-year cause-specific survival (CSS) was 56.1% in the entire cohort. Older age (hazard ratio [HR] 2.210, P < 0.001) and bone metastasis (HR 1.903, P = 0.002) were the independent prognostic factors associated with inferior CSS. Similar results were found in those with bone-only metastasis (n = 80) or lung-only metastasis (n = 117), which showed that patients with bone-only metastasis had an inferior CSS compared to those with metastases only to the lung (HR 1.926, P = 0.005). CONCLUSIONS: Lung and bone are the most frequently distant metastatic sites in patients with primary metastatic ES of bone. Bone metastasis is an independent risk factor for inferior survival.

11.
New Phytol ; 230(5): 1967-1984, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606283

RESUMEN

Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.


Asunto(s)
Oryza , Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas , Histonas , Metiltransferasas/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
12.
Proc Natl Acad Sci U S A ; 117(52): 33679-33688, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318175

RESUMEN

Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis. Loss of AtINO80 inhibited hypocotyl cell elongation and caused anthocyanin accumulation. Both light-induced genes and dark-induced genes were affected in the atino80 mutant. Genome-wide occupancy of the H2A.Z histone variant and levels of histone H3 were reduced in atino80 In particular, AtINO80 bound the gene body of ELONGATED HYPOCOTYL 5 (HY5), resulting in lower chromatin incorporations of H2A.Z and H3 at HY5 in atino80 Genetic analysis revealed that AtINO80 acts in a phytochrome B- and HY5-dependent manner in the regulation of photomorphogenesis. Together, our study elucidates a mechanism wherein AtINO80 modulates nucleosome density and H2A.Z incorporation and represses the transcription of light-related genes, such as HY5, to fine tune plant photomorphogenesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histonas/metabolismo , Luz , Morfogénesis/efectos de la radiación , Nucleosomas/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/genética , Mutación/genética , Transcriptoma/genética
13.
Proc Natl Acad Sci U S A ; 117(48): 30391-30399, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199628

RESUMEN

Nucleosome Assembly Protein 1 (NAP1) family proteins are evolutionarily conserved histone chaperones that play important roles in diverse biological processes. In this study, we determined the crystal structure of Arabidopsis NAP1-Related Protein 1 (NRP1) complexed with H2A-H2B and uncovered a previously unknown interaction mechanism in histone chaperoning. Both in vitro binding and in vivo plant rescue assays proved that interaction mediated by the N-terminal α-helix (αN) domain is essential for NRP1 function. In addition, the C-terminal acidic domain (CTAD) of NRP1 binds to H2A-H2B through a conserved mode similar to other histone chaperones. We further extended previous knowledge of the NAP1-conserved earmuff domain by mapping the amino acids of NRP1 involved in association with H2A-H2B. Finally, we showed that H2A-H2B interactions mediated by αN, earmuff, and CTAD domains are all required for the effective chaperone activity of NRP1. Collectively, our results reveal multiple interaction modes of a NAP1 family histone chaperone and shed light on how histone chaperones shield H2A-H2B from nonspecific interaction with DNA.


Asunto(s)
Histonas/química , Modelos Moleculares , Proteína 1 de Ensamblaje de Nucleosomas/química , Secuencias de Aminoácidos , Aminoácidos , Arabidopsis , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
14.
Nat Commun ; 11(1): 5717, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177521

RESUMEN

While the yeast Chz1 acts as a specific histone-chaperone for H2A.Z, functions of CHZ-domain proteins in multicellular eukaryotes remain obscure. Here, we report on the functional characterization of OsChz1, a sole CHZ-domain protein identified in rice. OsChz1 interacts with both the canonical H2A-H2B dimer and the variant H2A.Z-H2B dimer. Within crystal structure the C-terminal region of OsChz1 binds H2A-H2B via an acidic region, pointing to a previously unknown recognition mechanism. Knockout of OsChz1 leads to multiple plant developmental defects. At genome-wide level, loss of OsChz1 causes mis-regulations of thousands of genes and broad alterations of nucleosome occupancy as well as reductions of H2A.Z-enrichment. While OsChz1 associates with chromatin regions enriched of repressive histone marks (H3K27me3 and H3K4me2), its loss does not affect the genome landscape of DNA methylation. Taken together, it is emerging that OsChz1 functions as an important H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin for higher eukaryote development.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Cromatina/genética , Metilación de ADN , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Nucleosomas/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Multimerización de Proteína
15.
Plant J ; 103(3): 1010-1024, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32324922

RESUMEN

Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/fisiología , Flores/crecimiento & desarrollo , Chaperonas de Histonas/fisiología , Chaperonas Moleculares/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Flores/metabolismo , Flores/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Chaperonas de Histonas/metabolismo , Código de Histonas , Chaperonas Moleculares/metabolismo
16.
New Phytol ; 227(5): 1453-1466, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32315442

RESUMEN

Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.


Asunto(s)
Proteínas de Arabidopsis , Florigena , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Florigena/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histonas/metabolismo , Metilación , Fotoperiodo , Espectrometría de Masas en Tándem
17.
Front Plant Sci ; 11: 277, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218796

RESUMEN

Post-translational covalent modifications of histones play important roles in modulating chromatin structure and are involved in the control of multiple developmental processes in plants. Here we provide insight into the contribution of the histone lysine methyltransferase SET DOMAIN GROUP 8 (SDG8), implicated in histone H3 lysine 36 trimethylation (H3K36me3), in connection with RNA polymerase II (RNAPII) to enhance Arabidopsis immunity. We showed that even if the sdg8-1 loss-of-function mutant, defective in H3K36 methylation, displayed a higher sensitivity to different strains of the bacterial pathogen Pseudomonas syringae, effector-triggered immunity (ETI) still operated, but less efficiently than in the wild-type (WT) plants. In sdg8-1, the level of the plant defense hormone salicylic acid (SA) was abnormally high under resting conditions and was accumulated similarly to WT at the early stage of pathogen infection but quickly dropped down at later stages. Concomitantly, the transcription of several defense-related genes along the SA signaling pathway was inefficiently induced in the mutant. Remarkably, albeit the defense genes PATHOGENESIS-RELATED1 (PR1) and PR2 have retained responsiveness to exogenous SA, their inductions fade more rapidly in sdg8-1 than in WT. At chromatin, while global levels of histone methylations were found to be stable, local increases of H3K4 and H3K36 methylations as well as RNAPII loading were observed at some defense genes following SA-treatments in WT. In sdg8-1, the H3K36me3 increase was largely attenuated and also the increases of H3K4me3 and RNAPII were frequently compromised. Lastly, we demonstrated that SDG8 could physically interact with the RNAPII C-terminal Domain, providing a possible link between RNAPII loading and H3K36me3 deposition. Collectively, our results indicate that SDG8, through its histone methyltransferase activity and its physical coupling with RNAPII, participates in the strong transcriptional induction of some defense-related genes, in particular PR1 and PR2, to potentiate sustainable immunity during plant defense response to bacterial pathogen.

18.
Front Plant Sci ; 10: 1498, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824531

RESUMEN

The H2A/UBIQUITIN-binding proteins AtZRF1a/b have been reported as key regulators involved in multiple processes of Arabidopsis plant growth and development. Yet, the cellular and molecular mechanisms underlying the mutant phenotype remain largely elusive. Here we show that loss-of-function of AtZRF1a/b causes defective root elongation and deformed root apical meristem organization in seedlings. The premature termination of the primary root in the atzrf1a;atzrf1b double mutant is associated with an advanced onset of endoreduplication and subsequent consumption of reservoir stem cells. Cytological analyses using cell type-specific markers and florescent dyes indicate that AtZRF1a/b are involved in maintenance of proper cell layer organization, determinacy of cell identity, and establishment of auxin gradient and maximum at the root tip. During embryogenesis AtZRF1a/b act dominantly in regulating the maintenance of ground tissue initial cells and production of lateral root cap. Lastly, quantitative real-time polymerase chain reaction analysis shows mis-expression of some key genes involved in regulating cell patterning, cell proliferation and/or hormone pathways. Our results provide important insight into AtZRF1a/b function in cell fate determinacy and in establishment and maintenance of proper stem cell reservoir during embryonic and post-embryonic root development.

19.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2614-2620, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31418185

RESUMEN

Three typical plant communities (evergreen broad-leaved forest at low-altitude 1100 m, evergreen and deciduous mixed broad-leaved forest at mid-altitude 1500 m, and evergreen conife-rous and broad-leaved mixed forest at high-altitude 1900 m) in Maoer Mountain, Guangxi, China were surveyed along an altitude gradient. We measured the tree layer plant architecture and environmental factors, to analyze the variation of plant architecture traits among the three communities and its influencing factors. The results showed that the tree layer canopy area, basal diameter at 45 cm height, diameter at breast height (DBH), and leaf convergence increased with increasing altitude, whereas tree height, branch height, and canopy thickness first increased and then decreased. Horizontal branches occurred more often in communities at lower altitude , less frequent at high altitude, and the least frequent in middle altitude communities. Correlations among tree layer plant architecture traits were stronger in the mid-altitude community than that in the other altitude communities. Results from the redundancy analysis showed that soil organic matter and total solar radiation were the main factors driving the variation of plant architecture traits in the tree layers, accounting for 39.6% and 23.9% of the total variation, respectively. Soil organic matter had a greater positive impact on canopy area and branch height, whereas total solar radiation was more influential on the DBH and 45 cm basal diameter. In conclusion, tree layer architecture of communities along the altitude gradient in Maoer Mountain was divergent, with soil organic matter and total solar radiation as the main driving forces.


Asunto(s)
Altitud , Árboles/fisiología , China , Bosques , Plantas , Suelo , Árboles/anatomía & histología
20.
Epigenetics Chromatin ; 12(1): 40, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266517

RESUMEN

BACKGROUND: In animals, H3K4me2 and H3K4me3 are enriched at the transcription start site (TSS) and function as epigenetic marks that regulate gene transcription, but their functions in plants have not been fully characterized. RESULTS: We used chromatin immunoprecipitation sequencing to analyze the rice genome-wide changes to H3K4me1/H3K4me2/H3K4me3 following the loss of an H3K4-specific methyltransferase, SDG701. The knockdown of SDG701 resulted in a global decrease in H3K4me2/H3K4me3 levels throughout the rice genome. An RNA-sequencing analysis revealed that many genes related to diverse developmental processes were misregulated in the SDG701 knockdown mutant. In rice, H3K4me3 and H3K36me3 are positively correlated with gene transcription; however, surprisingly, the H3K4me2 level was negatively associated with gene transcription levels. Furthermore, the H3K4me3 level at the TSS region decreased significantly in the genes that exhibited down-regulated expression in the SDG701 knockdown mutant. In contrast, the genes with up-regulated expression in the mutant were associated with a considerable decrease in H3K4me2 levels over the gene body region. CONCLUSION: A comparison of the genome-wide distributions of H3K4me2 in eukaryotes indicated that the H3K4me2 level is not correlated with the gene transcription level in yeast, but is positively and negatively correlated with gene expression in animals and plants, respectively. Our results uncovered H3K4me2 as a novel repressive mark in plants.


Asunto(s)
Histonas/genética , Plantas/genética , Inmunoprecipitación de Cromatina/métodos , Metilación de ADN , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Represión Epigenética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Histonas/metabolismo , Lisina/metabolismo , Plantas/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...