Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724995

RESUMEN

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Asunto(s)
Células Epiteliales , Exosomas , MicroARNs , Prostatitis , Células del Estroma , Masculino , Exosomas/metabolismo , Prostatitis/genética , Prostatitis/patología , Prostatitis/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Animales , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Próstata/patología , Próstata/metabolismo , Dolor Pélvico , Inflamación/genética , Inflamación/patología , Ratones , Sistema de Señalización de MAP Quinasas
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 11-20, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615161

RESUMEN

OBJECTIVES: Trigeminal neuralgia (TN) is a severe chronic neuropathic pain that mainly affects the distribution area of the trigeminal nerve with limited treating efficacy. There are numerous treatments for TN, but currently the main clinical approach is to suppress pain by carbamazepine (CBZ). Brain-derived neurotrophic factor (BDNF) is closely related to chronic pain. This study aims to determine the effects of CBZ treatment on BDNF expression in both the trigeminal ganglion (TG) and serum of TN via a chronic constriction injury of the infraorbital nerve (ION-CCI) rat model. METHODS: The ION-CCI models were established in male Sprague-Dawley rats and were randomly divided into a sham group, a TN group, a TN+low-dose CBZ treatment group (TN+20 mg/kg CBZ group), a TN+medium-dose CBZ treatment group (TN+40 mg/kg CBZ group), and a TN+high-dose CBZ treatment group (TN+80 mg/kg CBZ group). The mechanical pain threshold in each group of rats was measured regularly before and after surgery. The expressions of BDNF and tyrosine kinase receptor B (TrkB) mRNA in TGs of rats in different groups were determined by real-time PCR, and the expression of BDNF protein on neurons in TGs was observed by immunofluorescence. Western Blotting was used to detect the protein expression of BDNF, TrkB, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) in TGs of rats in different groups. The expression of BDNF in the serum of rats in different groups was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results of mechanical pain sensitivity showed that there was no significant difference in the mechanical pain threshold in the right facial sensory area of the experimental rats in each group before surgery (all P>0.05). From the 3rd day after operation, the mechanical pain threshold of rats in the TN group was significantly lower than that in the sham group (all P<0.01), and the mechanical pain threshold of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 CBZ mg/kg group was higher than that in the TN group (all P<0.05). The BDNF and TrkB mRNA and protein expressions in TGs of rats in the TN group were higher than those in the sham group (all P<0.05), and those in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than the TN group (all P<0.05). The p-ERK levels in TG of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were significantly decreased compared with the TN group (all P<0.05). The BDNF and neuron-specific nuclear protein (NeuN) were mainly co-expressed in neuron of TGs in the TN group and they were significantly higher than those in the sham group (all P<0.05). The co-labeled expressions of BDNF and NeuN in TGs of the TN+ 80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). The results of ELISA showed that the level of BDNF in the serum of the TN group was significantly higher than that in the sham group (P<0.05). The levels of BDNF in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). Spearman correlation analysis showed that the BDNF level in serum was negatively correlated with mechanical pain threshold (r=-0.650, P<0.01). CONCLUSIONS: CBZ treatment can inhibit the expression of BDNF and TrkB in the TGs of TN rats, reduce the level of BDNF in serum of TN rats and the phosphorylation of ERK signaling pathway, so as to inhibit TN. The serum level of BDNF can be considered as an indicator for the diagnosis and prognosis of TN.


Asunto(s)
Carbamazepina , Dolor Crónico , Neuralgia del Trigémino , Animales , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Carbamazepina/farmacología , Proteínas Quinasas , Ratas Sprague-Dawley , ARN Mensajero , Ganglio del Trigémino/efectos de los fármacos , Neuralgia del Trigémino/tratamiento farmacológico
3.
IEEE Trans Image Process ; 33: 3075-3089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656839

RESUMEN

In this paper, we propose a graph-represented image distribution similarity (GRIDS) index for full-reference (FR) image quality assessment (IQA), which can measure the perceptual distance between distorted and reference images by assessing the disparities between their distribution patterns under a graph-based representation. First, we transform the input image into a graph-based representation, which is proven to be a versatile and effective choice for capturing visual perception features. This is achieved through the automatic generation of a vision graph from the given image content, leading to holistic perceptual associations for irregular image regions. Second, to reflect the perceived image distribution, we decompose the undirected graph into cliques and then calculate the product of the potential functions for the cliques to obtain the joint probability distribution of the undirected graph. Finally, we compare the distances between the graph feature distributions of the distorted and reference images at different stages; thus, we combine the distortion distribution measurements derived from different graph model depths to determine the perceived quality of the distorted images. The empirical results obtained from an extensive array of experiments underscore the competitive nature of our proposed method, which achieves performance on par with that of the state-of-the-art methods, demonstrating its exceptional predictive accuracy and ability to maintain consistent and monotonic behaviour in image quality prediction tasks. The source code is publicly available at the following website https://github.com/Land5cape/GRIDS.

4.
Adv Sci (Weinh) ; 11(18): e2400845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520732

RESUMEN

Complete remission of colorectal cancer (CRC) is still unachievable in the majority of patients by common fractionated radiotherapy, leaving risks of tumor metastasis and recurrence. Herein, clinical CRC samples demonstrated a difference in the phosphorylation of translation initiation factor eIF2α (p-eIF2α) and the activating transcription factor 4 (ATF4), whose increased expression by initial X-ray irradiation led to the resistance to subsequent radiotherapy. The underlying mechanism is studied in radio-resistant CT26 cells, revealing that the incomplete mitochondrial outer membrane permeabilization (iMOMP) triggered by X-ray irradiation is key for the elevated expression of p-eIF2α and ATF4, and therefore radio-resistance. This finding guided to discover that metformin and 2-DG are synergistic in reversing radio resistance by inhibiting p-eIF2α and ATF4. Liposomes loaded with metformin and 2-DG (M/D-Lipo) are thus prepared for enhancing fractionated radiotherapy of CRC, which achieved satisfactory therapeutic efficacy in both local and metastatic CRC tumors by reversing radio-resistance and preventing T lymphocyte exhaustion.


Asunto(s)
Neoplasias Colorrectales , Liposomas , Metformina , Mitocondrias , Tolerancia a Radiación , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/patología , Ratones , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Metformina/farmacología , Metformina/uso terapéutico , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética
5.
ACS Nano ; 18(12): 9114-9127, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38477305

RESUMEN

Immune checkpoint blockade (ICB) therapy is promising to revolutionize cancer regimens, but the low response rate and the lack of a suitable patient stratification method have impeded universal profit to cancer patients. Noninvasive positron emission tomography (PET) imaging in the whole body, upon coupling with specific biomarkers closely related to the immune response, could provide spatiotemporal information to prescribe cancer therapy. Herein, we demonstrate that antisilencing function 1a (ASF1a) could serve as a biomarker target to delineate tumor immune microenvironments by immune PET (iPET). The iPET radiotracer (68Ga-AP1) is designed to target ASF1a in tumors and predict immune response, and the signal intensity predicts anti-PD-1 (αPD-1) therapy response in a negative correlation manner. The ICB-resistant tumors with a high level of ASF1a as revealed by iPET (ASF1aHigh-iPET) are prescribed to be treated by either the combined 177Lu-labeled AP1 and αPD-1 or the standalone α particle-emitting 225Ac-labeled AP1, both achieving enhanced therapeutic efficacy and prolonged survival time. Our study not only replenishes the iPET arsenal for immune-related response evaluation by designing a reliable biomarker and a facile radiotracer but also provides optional therapeutic strategies for ICB-resistant tumors with versatile radionuclide-labeled AP1 peptides, which is promising for real-time clinical diagnosis and individualized therapy planning simultaneously.


Asunto(s)
Neoplasias , Radioisótopos , Humanos , Tomografía de Emisión de Positrones/métodos , Biomarcadores , Péptidos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
6.
Sci Total Environ ; 924: 171637, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479528

RESUMEN

Wastewater treatment plants (WWTPs) have been regarded as the main sources of greenhouse gas (GHG) emissions. This study compares the influent characteristics of industrial wastewater represented by the WWTP of paper mill and that of domestic sewage represented by the Benchmark Simulation Model No. 1 (BSM1) under stormy weather. The various sources of GHG emissions from the two processes are calculated, and the contribution of each source to the total GHG emissions is assessed. Firstly, based on the mass balance analysis and the recognized emission factors, a GHG emission calculation model was established for the on-site and off-site GHG emission sources from the WWTP of paper mill. Simultaneously, a GHG emission experimental model was established by determining the dissolved concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) in the papermaking wastewater, to verify the accuracy of the developed GHG calculation model. Subsequently, an optimum aeration rate for the paper mill was investigated to comply with the discharging norms. Under the optimum aeration rate of 10 h-1, the obtained calculation accuracies of CO2 and N2O emissions were 94.6 % and 91.1 %, respectively. The mean total GHG emission in the WWTP of paper mill was 550 kg CO2-eq·h-1, of which 44.6 % came from the on-site emission sources and 55.4 % from the off-site emission sources. It was also uncovered that the electrical consumption for aeration was the largest contributor to the total GHG emissions with a proportion of 25.2 %, revealing that the control strategy of the aeration rate is highly significant in reducing GHG emissions in WWTP of paper mills.

7.
Biomater Adv ; 158: 213796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342024

RESUMEN

Tumor metastasis and recurrence are principal reasons for the high mortality and poor prognosis of cancers. Inefficient engagement between T cell and tumor cell, as well as the universal existence of immune checkpoints, are important factors to the limited immunological surveillance of the immune systems to tumor cells. Herein, an immune engager based on engineered platelets with CD3 antibody modification (P-aCD3) was constructed to facilitate the contact between T cell and tumor cell via providing the anchoring sites of above two cells. Combined with the immune checkpoint blockade strategy, P-aCD3 effectively enhanced T cell mediated cytotoxicity and inhibited tumor recurrence and metastasis in mice melanoma postoperative model and breast cancer model, resulting in significantly prolonged survival of mice.


Asunto(s)
Melanoma , Animales , Ratones , Melanoma/cirugía , Plaquetas , Modelos Animales de Enfermedad , Existencialismo , Vigilancia Inmunológica
8.
ACS Med Chem Lett ; 15(2): 230-238, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38352836

RESUMEN

Herein, we disclose a powerful strategy for the functionalization of the antitumor natural alkaloid noscapine by utilizing photoredox/nickel dual-catalytic coupling technology. A small collection of 37 new noscapinoids with diverse (hetero)alkyl and (hetero)cycloalkyl groups and enhanced sp3 character was thus synthesized. Further in vitro antiproliferative activity screening and SAR study enabled the identification of 6o as a novel, potent, and less-toxic anticancer agent. Furthermore, 6o exerts superior cellular activity via an unexpected S-phase arrest mechanism and could significantly induce cell apoptosis in a dose-dependent manner, thereby further highlighting its potential in drug discovery as a promising lead compound.

9.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352530

RESUMEN

Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.

10.
J Transl Med ; 22(1): 178, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369471

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS: HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS: HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS: We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Transaminasas/genética
11.
Curr Pharm Des ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38415445

RESUMEN

BACKGROUND: Recent studies have shown that XihuangWan (XHW) is a kind of Chinese medicine with significant anti-tumor and anti-inflammatory activities. However, its mechanism for preventing and treating radiation proctitis in rectal cancer patients during radiotherapy remains unclear. METHODS: This study employed the network pharmacology to establish a "drug-active ingredient-target genedisease" network via using TCMSP, SymMap, GeneCard, and OMIM databases. The PPI network was conducted by the String tool. The core targets of XHW in the treatment of rectal cancer and radiation enteritis were identified by topological analysis, and the functional annotation analysis and pathway enrichment analysis were performed. RESULTS: A total of 61 active ingredients of XHW ingredients, 4607 rectal cancer-related genes, 5803 radiation enteritis-related genes, and 68 common targets of XHW in the treatment of rectal cancer and radiation enteritis were obtained. PTGS1 and NR3C2, as identified potential targets, were significantly associated with OS of colorectal cancer patients. GO and KEGG enrichment analysis showed that bioinformatics annotation of these common genes is mainly involved in DNA-binding transcription factor, PI3K/Akt, TNF, HIF-1 signaling pathway, and colorectal cancer pathway. CONCLUSION: The active ingredients of XHW, mainly including Quercetin, Ellagic acid, and Stigmasterol, might act on common targets of rectal cancer and radiation enteritis, such as PTGS1, NR3C2, IL-6, EGFR, HIF-1A, CASP3, BCL2, ESR1, MYC, and PPARG, and regulate multiple signaling pathways like PI3K-Akt, TNF, and HIF-1 to inhibit tumor proliferation, tumor angiogenesis, inflammatory responses, and oxidative stress, thereby achieving prevention and treatment of radiation enteritis in rectal cancer patients during radiotherapy. It provided an important reference for further elucidating the anti-inflammation and anti-tumor mechanism and clinical application of XHW.

12.
Biomaterials ; 305: 122469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244344

RESUMEN

Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.


Asunto(s)
Neoplasias de la Próstata , Animales , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Sistemas de Liberación de Medicamentos , Próstata/patología
13.
Adv Mater ; 36(8): e2309332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934114

RESUMEN

Bacterial-based delivery strategies have recently emerged as a unique research direction in the field of drug delivery. However, bacterial vectors are quickly phagocytosed by immune cells after entering the bloodstream. Taking advantage of this phenomenon, herein, this work seeks to harness the potential of immune cells to delivery micron-sized bacterial vectors, and find that inactivated bacterial can accumulate at tumor-site after intravenous injection through CD11b+ cells hitchhiking. To this end, this work then designs a gold-platinum bimetallic nanozyme coated bacterial vector (Au-Pt@VNP20009, APV). Utilizing strong tumor inflammatory response induced by low dose X-rays, this work further heightens the ability of CD11b+ immune cells to assist APV hitchhiking for tumor-targeted delivery, which can significantly relieve tumor hypoxia and immunosuppression, and inhibit tumor growth and metastasis. This work elucidates the potential mechanisms of bacterial vector targeted delivery, opening up new horizons for bacterial vector delivery strategies and clinical tumor radioimmunotherapy.


Asunto(s)
Neoplasias , Radioinmunoterapia , Humanos , Bacterias , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Inmunoterapia
14.
J Control Release ; 365: 208-218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981051

RESUMEN

Herpes simplex keratitis (HSK) is a common blinding corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. Antiviral drugs and corticosteroids haven't shown adequate therapeutic efficacy. During the early stage of HSV-1 infection, macrophages serve as the first line of defense. In particular, CD169+ macrophages play an important role in phagocytosis and antigen presentation. Therefore, we constructed GM-gD-lip, a ganglioside GM1 liposome vaccine encapsulating HSV-1 glycoprotein D and targeting CD169+ macrophages. After subconjunctival injection of the vaccine, we evaluated the survival rate and ocular surface lesions of the HSK mice, as well as the virus levels in the tear fluid, corneas, and trigeminal ganglia. We discovered that GM-gD-lip reduced HSV-1 viral load and alleviated the clinical severity of HSK. The GM-gD-lip also increased the number of corneal infiltrating macrophages, especially CD169+ macrophages, and polarized them toward M1. Furthermore, the number of dendritic cells (DCs) and CD8+ T cells in the ocular draining lymph nodes was significantly increased. These findings demonstrated that GM-gD-lip polarized CD169+ macrophages toward M1 to eliminate the virus while cross-presenting antigens to CD8+ T cells via DCs to activate adaptive immunity, ultimately attenuating the severity of HSK. The use of GM-gD-lip as an immunotherapeutic method for the treatment of HSK has significant implications.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Vacunas , Animales , Ratones , Liposomas , Linfocitos T CD8-positivos , Gangliósidos , Queratitis Herpética/tratamiento farmacológico , Herpesvirus Humano 1/fisiología , Córnea , Macrófagos , Glicoproteínas
15.
ACS Nano ; 17(23): 23998-24011, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37988029

RESUMEN

Programmed death-ligand 1 (PD-L1) is a specialized shield on tumor cells that evades the immune system. Even inhibited by PD-L1 antibodies, a cycling process constantly transports PD-L1 from inside to outside of cells, facilitating the renewal and replenishment of PD-L1 on the cancer cell membrane. Herein, we develop a sodium alginate hydrogel consisting of elesclomol-Cu and galactose to induce persistent cuproptosis, leading to the reduction of PD-L1 for radio-immunotherapy of colon tumors. First, a prefabricated hydrogel is synthesized by immobilizing elesclomol onto a sodium alginate saccharide chain through the coordination with bivalent copper ions (Cu2+), followed by incorporation of galactose. After implantation into the tumors, this prefabricated hydrogel can be further cross-linked in the presence of physiological calcium ions (Ca2+), resulting in the formation of a hydrogel with controlled release of elesclomol-Cu2+ (ES-Cu) and galactose. The hydrogel effectively induces the oligomerization of DLAT and cuproptosis in colorectal cancer cells. Interestingly, radiation-induced PD-L1 upregulation is abrogated in the presence of the hydrogel, releasing ES-Cu and galactose. Consequently, the sensitization of tumor to radiotherapy and immunotherapy is significantly improved, further prolonging the survival of tumor-bearing mice in both local and metastatic tumors. Our study introduces an approach that combines cuproptosis with immunotherapy and radiotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias del Colon , Animales , Ratones , Cobre , Hidrogeles , Galactosa , Ligandos , Neoplasias del Colon/tratamiento farmacológico , Inmunoterapia/métodos , Alginatos , Iones , Microambiente Tumoral
16.
Acta Pharm Sin B ; 13(10): 4149-4171, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799393

RESUMEN

Bacteria-mediated anti-tumor therapy has received widespread attention due to its natural tumor-targeting ability and specific immune-activation characteristics. It has made significant progress in breaking the limitations of monotherapy and effectively eradicating tumors, especially when combined with traditional therapy, such as radiotherapy. According to their different biological characteristics, bacteria and their derivatives can not only improve the sensitivity of tumor radiotherapy but also protect normal tissues. Moreover, genetically engineered bacteria and bacteria-based biomaterials have further expanded the scope of their applications in radiotherapy. In this review, we have summarized relevant researches on the application of bacteria and its derivatives in radiotherapy in recent years, expounding that the bacteria, bacterial derivatives and bacteria-based biomaterials can not only directly enhance radiotherapy but also improve the anti-tumor effect by improving the tumor microenvironment (TME) and immune effects. Furthermore, some probiotics can also protect normal tissues and organs such as intestines from radiation via anti-inflammatory, anti-oxidation and apoptosis inhibition. In conclusion, the prospect of bacteria in radiotherapy will be very extensive, but its biological safety and mechanism need to be further evaluated and studied.

17.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37765049

RESUMEN

Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study, we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α, RANTES, IL-1ß and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs); and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that BCA is a promising therapeutic approach for application in treating HSK.

18.
J Transl Med ; 21(1): 489, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474942

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is an immunologically and histologically diverse tumor. However, how the structural heterogeneity of tumor microenvironment (TME) affects cancer progression and treatment response remains unclear. Hence, we characterized the TME architectures of ccRCC tissues using imaging mass cytometry (IMC) and explored their associations with clinical outcome and therapeutic response. METHODS: Using IMC, we profiled the TME landscape of ccRCC and paracancerous tissue by measuring 17 markers involved in tissue architecture, immune cell and immune activation. In the ccRCC tissue, we identified distinct immune architectures of ccRCC tissue based on the mix score and performed cellular neighborhood (CN) analysis to subdivide TME phenotypes. Moreover, we assessed the relationship between the different TME phenotypes and ccRCC patient survival, clinical features and treatment response. RESULTS: We found that ccRCC tissues had higher levels of CD8+ T cells, CD163- macrophages, Treg cells, endothelial cells, and fibroblasts than paracancerous tissues. Immune infiltrates in ccRCC tissues distinctly showed clustered and scattered patterns. Within the clustered pattern, we identified two subtypes with different clinical outcomes based on CN analysis. The TLS-like phenotype had cell communities resembling tertiary lymphoid structures, characterized by cell-cell interactions of CD8+ T cells-B cells and GZMB+CD8+ T cells-B cells, which exhibited anti-tumor features and favorable outcomes, while the Macrophage/T-clustered phenotype with macrophage- or T cell-dominated cell communities had a poor prognosis. Patients with scattered immune architecture could be further divided into scattered-CN-hot and scattered-CN-cold phenotypes based on the presence or absence of immune CNs, but both had a better prognosis than the macrophage/T-clustered phenotype. We further analyzed the relationship between the TME phenotypes and treatment response in five metastatic ccRCC patients treated with sunitinib, and found that all three responders were scattered-CN-hot phenotype while both non-responders were macrophage/T-clustered phenotype. CONCLUSION: Our study revealed the structural heterogeneity of TME in ccRCC and its impact on clinical outcome and personalized treatment. These findings highlight the potential of IMC and CN analysis for characterizing TME structural units in cancer research.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Linfocitos T CD8-positivos , Células Endoteliales , Microambiente Tumoral , Pronóstico
19.
J Nanobiotechnology ; 21(1): 198, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340409

RESUMEN

BACKGROUND: Chronic pelvic pain syndrome (CPPS) is a typical symptom of chronic prostatitis (CP) in males that may cause abnormal urination, sexual dysfunction, or depression and significantly affect the quality of life of the patient. Currently, there is no effective treatment for CPPS due to its recurrence and intractability. For synergistic CPPS therapy, we developed pH/reactive oxygen species (ROS) dual-responsive dexamethasone (Dex) nanoformulations using a ROS-responsive moiety and phytochemical modified α-cyclodextrin (α-CD) as the carrier. RESULTS: Dex release from the nanoformulations can be controlled in acidic and/or ROS-rich microenvironments. The fabricated Dex nanoformulations can also be efficiently internalized by lipopolysaccharide (LPS)-stimulated macrophages, prostatic epithelial cells, and stromal cells. Moreover, the levels of proinflammatory factors (e.g., TNF-α, IL-1ß, and IL-17 A) in these cells were significantly decreased by Dex nanoformulations treatment through the release of Dex, phytochemical and elimination of ROS. In vivo experiments demonstrated notable accumulation of the Dex nanoformulations in prostate tissue to alleviate the symptoms of CPPS through the downregulation of proinflammatory factors. Interestingly, depression in mice may be relieved due to alleviation of their pelvic pain. CONCLUSION: We fabricated Dex nanoformulations for the effective management of CPPS and alleviation of depression in mice.


Asunto(s)
Dolor Crónico , Masculino , Ratones , Animales , Dolor Crónico/complicaciones , Dolor Crónico/terapia , Glucocorticoides , Calidad de Vida , Depresión , Especies Reactivas de Oxígeno , Dolor Pélvico/tratamiento farmacológico , Dolor Pélvico/etiología
20.
Biomaterials ; 300: 122202, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37336116

RESUMEN

The effectiveness of mesenchymal stem cells (MSCs) on inflammation-related disease is limited and the pharmaceutical preparation that was used to enhance the efficacy of MSCs cannot reach the diseased tissue in large quantities. Herein, antioxidant liposome (Lipo-OPC) is designed to anchor onto the surface of MSCs membrane via click chemical reaction (MSC-Lipo-OPC) without affecting the viability and physiological characteristics of MSCs, thus allowing efficient accumulation of MSC-Lipo-OPC in X-ray irradiated lung sites. More importantly, MSC-Lipo-OPC promotes the change of the quantity and polarity of innate immunocytes, mainly including neutrophils, macrophages and Tregs, in favor of anti-inflammatory, finally preventing the formation of radioactive pulmonary fibrosis. Therefore, it could enhance the treatment outcome of both of MSCs and drugs to radiation-induced lung injury via modifying the drug-loaded nanoparticle on the surface of MSCs membrane, further promoting the application of MSCs in radiation damage and protection.


Asunto(s)
Lesión Pulmonar , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Neumonitis por Radiación , Humanos , Fibrosis Pulmonar/terapia , Liposomas , Neumonitis por Radiación/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA