Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256827

RESUMEN

Soil salinization is the main abiotic stressor faced by crops. An improved understanding of the transcriptional response to salt stress in roots, the organ directly exposed to a high salinity environment, can inform breeding strategies to enhance tolerance and increase crop yield. Here, RNA-sequencing was performed on the roots of salt-tolerant wheat breeding line CH7034 at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on transcriptome data, a weighted gene co-expression network analysis (WGCNA) was constructed, and five gene co-expression modules were obtained, of which the blue module was correlated with the time course of salt stress at 1 and 48 h. Two GO terms containing 249 differentially expressed genes (DEGs) related to osmotic stress response and salt-stress response were enriched in the blue module. These DEGs were subsequently used for association analysis with a set of wheat germplasm resources, and the results showed that four genes, namely a Walls Are Thin 1-related gene (TaWAT), an aquaporin gene (TaAQP), a glutathione S-transfer gene (TaGST), and a zinc finger gene (TaZFP), were associated with the root salt-tolerance phenotype. Using the four candidate genes as hub genes, a co-expression network was constructed with another 20 DEGs with edge weights greater than 0.6. The network showed that TaWAT and TaAQP were mainly co-expressed with fifteen interacting DEGs 1 h after salt treatment, while TaGST and TaZFP were mainly co-expressed with five interacting DEGs 48 h after salt treatment. This study provides key modules and candidate genes for understanding the salt-stress response mechanism in wheat roots.

2.
Molecules ; 29(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38202802

RESUMEN

Understanding the pyrolysis product distributions of deep eutectic solvent (DES)-isolated lignins (DESLs) from different types of biomass is of great significance for lignin valorization. The structure and pyrolysis properties of DESLs obtained from eucalyptus (E-DESL), pine (P-DESL), and rice straw (R-DESL) were studied through the use of various methods such as elemental analysis, GPC, HS-GC, and NMR techniques, and the pyrolysis characteristics and product distributions of the DESLs were also further investigated through the use of TGA, Py-GC/MS, and tubular furnace pyrolysis. DESLs with high purity (88.5-92.7%) can be efficiently separated from biomass while cellulose is retained. E-DESL has a relatively low molecular weight, and P-DESL has a relatively higher hydrogen-carbon effective ratio and a lower number of condensation structures. The Py-GC/MS results show that, during DESL pyrolysis, the monomeric aromatic hydrocarbons, p-hydroxyphenyl-type phenols, and catechol-type phenols are gradually released when the guaiacyl-type phenols and syringyl-type phenols decrease with the rising temperature. 4-methylguaiacol and 4-methylcatechol, derived from the guaiacyl-type structural units, are positively correlated with temperature, which causes a significant increase in products with a side-chain carbon number of 1 from P-DESL pyrolysis. 4-vinylphenol, as a representative product of the R-DESL, derived from p-hydroxyphenyl-type structural units, also gradually increased. In addition, the P-DESL produces more bio-oil during pyrolysis, while gases have the highest distribution in E-DESL pyrolysis. It is of great significance to study the characteristic product distribution of lignin isolated through the use of DES for lignin directional conversion into specific high-value aromatic compounds.


Asunto(s)
Eucalyptus , Oryza , Pinus , Lignina , Disolventes Eutécticos Profundos , Pirólisis , Fenoles , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA