Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 23(1): 44, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765346

RESUMEN

BACKGROUND: Chinese medicine usually acts as "multi-ingredients, multi-targets and multi-pathways" on complex diseases, and these action modes reflect the coordination and integrity of the treatment process with traditional Chinese medicine (TCM). System pharmacology is developed based on the cross-disciplines of directional pharmacology, system biology, and mathematics, has the characteristics of integrity and synergy in the treatment process of TCM. Therefore, it is suitable for analyzing the key ingredients and mechanisms of TCM in treating complex diseases. Intracerebral Hemorrhage (ICH) is one of the leading causes of death in China, with the characteristics of high mortality and disability rate. Bring a significant burden on people and society. An increasing number of studies have shown that Chinese medicine prescriptions have good advantages in the treatment of ICH, and Ditan Decoction (DTT) is one of the commonly used prescriptions in the treatment of ICH. Modern pharmacological studies have shown that DTT may play a therapeutic role in treating ICH by inhibiting brain inflammation, abnormal oxidative stress reaction and reducing neurological damage, but the specific key ingredients and mechanism are still unclear. METHODS: To solve this problem, we established PPI network based on the latest pathogenic gene data of ICH, and CT network based on ingredient and target data of DTT. Subsequently, we established optimization space based on PPI network and CT network, and constructed a new model for node importance calculation, and proposed a calculation method for PES score, thus calculating the functional core ingredients group (FCIG). These core functional groups may represent DTT therapy for ICH. RESULTS: Based on the strategy, 44 ingredients were predicted as FCIG, results showed that 80.44% of the FCIG targets enriched pathways were coincided with the enriched pathways of pathogenic genes. Both the literature and molecular docking results confirm the therapeutic effect of FCIG on ICH via targeting MAPK signaling pathway and PI3K-Akt signaling pathway. CONCLUSIONS: The FCIG obtained by our network pharmacology method can represent the effect of DTT in treating ICH. These results confirmed that our strategy of active ingredient group optimization and the mechanism inference could provide methodological reference for optimization and secondary development of TCM.


Asunto(s)
Farmacología en Red , Fosfatidilinositol 3-Quinasas , Humanos , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Hemorragia Cerebral/tratamiento farmacológico
2.
BMC Complement Med Ther ; 22(1): 103, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413898

RESUMEN

BACKGROUND: Chinese herbal medicine (CHM) is characterized by "multi- compounds, multi-targets and multi-pathway", which has advanced benefits for preventing and treating complex diseases, but there still exists unsolved issues, mainly include unclear material basis and underlying mechanism of prescription. Integrated pharmacology is a hot cross research area based on system biology, mathematics and poly-pharmacology. It can systematically and comprehensively investigate the therapeutic reaction of compounds or drugs on pathogenic genes network, and is especially suitable for the study of complex CHM systems. Intracerebral Hemorrhage (ICH) is one of the main causes of death among Chinese residents, which is characterized with high mortality and high disability rate. In recent years, the treatment of ICH by CHM has been deeply researched. Xue Fu Zhu Yu Decoction (XFZYD), one of the commonly used prescriptions in treating ICH at clinic level, has not been clear about its mechanism. METHODS: Here, we established a strategy, which based on compounds-targets, pathogenetic genes, network analysis and node importance calculation. Using this strategy, the core compounds group (CCG) of XFZYD was predicted and validated by in vitro experiments. The molecular mechanism of XFZYD in treating ICH was deduced based on CCG and their targets. RESULTS: The results show that the CCG with 43 compounds predicted by this model is highly consistent with the corresponding Compound-Target (C-T) network in terms of gene coverage, enriched pathway coverage and accumulated contribution of key nodes at 89.49%, 88.72% and 90.11%, respectively, which confirmed the reliability and accuracy of the effective compound group optimization and mechanism speculation strategy proposed by us. CONCLUSIONS: Our strategy of optimizing the effective compound groups and inferring the mechanism provides a strategic reference for explaining the optimization and inferring the molecular mechanism of prescriptions in treating complex diseases of CHM.


Asunto(s)
Medicamentos Herbarios Chinos , Hemorragia Cerebral/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China/métodos , Reproducibilidad de los Resultados
3.
Oncol Lett ; 10(1): 379-383, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26171034

RESUMEN

Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb, Artemisia annua L., and has the ability to inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to inhibit the growth of a variety of types of human cancer. However, the effect of DHA on human glioma cells remains unclear. The aim of the present study was to investigate the effect of DHA on the proliferation of glioma cells, and whether DHA was able to enhance temozolomide (TMZ) sensitivity in vitro and in vivo. In total, 10 human glioma cell lines were used to analyze the growth inhibition ability of DHA by MTT assay. The typical autophagic vacuoles were monitored by the application of the autofluorescent agent, monodansylcadaverine. Western blotting was used to detect markers of apoptosis and autophagy, namely Caspase-3, Beclin-1 and LC3-B. The combination efficiency of DHA and TMZ was assessed in vitro and in vivo. The half maximal inhibitory concentration (IC50) of DHA differed among the ten human glioma cell lines. The number of autophagic vacuoles was higher in DHA-treated SKMG-4 cells; this was highest of all cell lines analyzed. The expression of autophagy molecular markers, Beclin-1 and LC3-B, was increased following DHA treatment, while no significant alteration was detected in the expression of apoptotic marker Caspase-3. When combined with DHA, the IC50 of TMZ decreased significantly in the four glioma cell lines analyzed. Furthermore, DHA enhanced the tumor inhibition ability of TMZ in tumor-burdened mice. The results of the present study demonstrated that DHA inhibited the proliferation of glioma cells and enhanced the tumor inhibition efficacy of TMZ in vitro and in vivo through the induction of autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...