Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808519

RESUMEN

Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA). However, the signaling of ABA in the regulation of fruit coloration is not fully understood. Here, a transcription factor FabHLH3 key to fruit coloration is identified by yeast two hybrid library screening using FaSnRK2.6 as a bait, an ABA core signaling component negative to ripening. Indeed, this interaction is also confirmed by firefly luciferase complementation assay and pull-down assay. RT-qPCR and Western blotting analysis confirm FabHLH3 is expressed ubiquitously in strawberry and stably during fruit development. Manipulating both FabHLH3 and FaSnRK2.6 expression by overexpression and interference demonstrates that FabHLH3 and FaSnRK2.6 promote and inhibit strawberry fruit coloration, respectively, using the marker gene FaUFGT, key to anthocyanin biosynthesis. FaSnRK2.6 can phosphorylate FabHLH3, which promotes FaUFGT expression by the directly binding to its promoter. The phosphorylation inhibits the binding of FabHLH3 to FaUFGT promoter, consequently suppressing FaUFGT expression. Altogether, FaSnRK2.6, a negative kinase in ripening, interacts with and phosphorylates FabHLH3 to suppress FaUFGT expression. With the increase of ABA content in strawberry fruit ripening, the expression of FaSnRK2.6 decreased, which released FabHLH3 transcription activity and enhanced FaUFGT expression, finally promoting the coloration. Thus, our findings fill a gap how FaSnRK2.6 negatively regulates strawberry fruit coloration and ripening by FabHLH3.

2.
Plant J ; 119(3): 1400-1417, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815085

RESUMEN

Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.


Asunto(s)
Ácido Abscísico , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Ácido Abscísico/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Fragaria/genética , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Fragaria/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Azúcares/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
3.
Plant Sci ; 338: 111892, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821024

RESUMEN

Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), ß-CC (ß-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.


Asunto(s)
Frutas , Reguladores del Crecimiento de las Plantas , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Ácido Abscísico/metabolismo , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
4.
J Biol Chem ; 299(10): 105250, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714466

RESUMEN

Abscisic acid (ABA) is a critical regulator for nonclimacteric fruit ripening such as in the model plant of strawberry (Fragaria × ananassa). Although FaRRP1 is proposed to participate in clathrin-mediated endocytosis of ABA, its action molecular mechanisms in ABA signaling are not fully understood. Here, using our isolated FaRRP1 (ripening-regulation protein) and candidate ABA receptor FaPYL2 and FaABAR from strawberry fruit, a series of silico and molecular interaction analyses demonstrate that they all bind to ABA, and FaRRP1 binds both FaPYL2 and FaABAR; by contrast, the binding affinity of FaRRP1 to FaPYL2 is relatively higher. Interestingly, the binding of FaRRP1 to FaPYL2 and FaABAR affects the perception affinity to ABA. Furthermore, exogenous ABA application and FaRRP1 transgenic analyses confirm that FaRRP1 participates in clathrin-mediated endocytosis and vesicle transport. Importantly, FaRRP1, FaPYL2, and FaABAR all trigger the initiation of strawberry fruit ripening at physiological and molecular levels. In conclusion, FaRRP1 not only binds to ABA but also affects the binding affinity of FaPYL2 and FaABAR to ABA, thus promoting strawberry fruit ripening. Our findings provide novel insights into the role of FaRRP1 in ABA trafficking and signaling, at least in strawberry, a model plant for nonclimacteric fruit ripening.

5.
Hortic Res ; 10(2): uhac260, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37533675

RESUMEN

Vacuolar Phosphate Transporter1 (VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening. Interestingly, here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits. The VvVPT1 protein isolated from grape (Vitis vinifera) berries was tonoplast-localized and contains SPX (Syg1/Pho81/XPR1) and MFS (major facilitator superfamily) domains. Its mRNA expression was significantly increased during fruit ripening and induced by sucrose. Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents, fruit firmness, and ripening-related gene expression. The VPT1 proteins (Grape VvVPT1, strawberry FaVPT1, and Arabidopsis AtVPT1) all showed low affinity for phosphate verified in yeast system, while they appear different in sugar transport capacity, consistent with fruit sugar status. Thus, our findings reveal a role for VPT1 in fruit ripening, associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole, and open potential avenues for genetic improvement in fleshy fruit.

6.
Plant Cell ; 35(11): 4020-4045, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37506031

RESUMEN

The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.


Asunto(s)
Fragaria , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Mol Cell Proteomics ; 22(6): 100549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37076046

RESUMEN

Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. To gain new insights into the proteins and processes, vacuolar Pi level regulated by vacuolar phosphate transporter 1 (VPT1) in Arabidopsis, we carried out tandem mass tag labeling proteome and phosphoproteome profiling of Arabidopsis WT and vpt1 loss-of-function mutant plants. The vpt1 mutant had a marked reduced vacuolar Pi level and a slight increased cytosol Pi level. The mutant was stunted as reflected in the reduction of the fresh weight compared with WT plants and bolting earlier under normal growth conditions in soil. Over 5566 proteins and 7965 phosphopeptides were quantified. About 146 and 83 proteins were significantly changed at protein abundance or site-specific phosphorylation levels, but only six proteins were shared between them. Functional enrichment analysis revealed that the changes of Pi states in vpt1 are associated with photosynthesis, translation, RNA splicing, and defense response, consistent with similar studies in Arabidopsis. Except for PAP26, EIN2, and KIN10, which were reported to be associated with phosphate starvation signal, we also found that many differential proteins involved in abscisic acid signaling, such as CARK1, SnRK1, and AREB3, were significantly changed in vpt1. Our study illuminates several new aspects of the phosphate response and identifies important targets for further investigation and potential crop improvement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Proteoma/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361578

RESUMEN

The surface of fresh-cut carrots is apt to white blush, however the physiological and molecular mechanism for this process is not yet fully understood. In this study, exogenous abscisic acid (ABA) and ethylene separately promoted and inhibited the white-blush formation after three days after treatment, respectively. Metabolome analysis found that white-blush components mainly consist of p-hydroxyphenyl lignin and guaiacyl lignin. Transcriptome analysis found an increase in the whiteness values was consistent with the higher expression of genes encoding O-methyltransferase, trans-anol O-methyltransferase, bergaptol O-methyltransferase, caffeic acid 3-O-methyltransferase, phenylalanine ammonia-lyase, and ferulate-5-hydroxylase, together with the lower expression of genes encoding cinnamic acid 4-hydroxylase caffeoyl-CoA O-methyltransferase and 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase. In conclusion, ABA plays an important role in lignin biosynthesis essential to the formation of white blush in fresh-cut carrots. This is the first report that uncovers the physiological and molecular causes of white blush in fresh-cut carrots, providing a basis for white-blush control in fresh-cut carrots.


Asunto(s)
Daucus carota , Daucus carota/genética , Daucus carota/metabolismo , Lignina , Ácido Abscísico , Etilenos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxigenasas de Función Mixta
9.
BMC Plant Biol ; 22(1): 532, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380276

RESUMEN

BACKGROUND: Volatile components are important secondary metabolites essential to fruit aroma quality, thus, in the past decades many studies have been extensively performed in clarifying fruit aroma formation. However, aroma components and biosynthesis in the fruit of Binzi (Malus pumila × Malus asiatica), an old local species with attractive aroma remain unknown. RESULTS: We investigated two Binzi cultivars, 'Xiangbinzi' (here named high-fragrant Binzi, 'HFBZ') and 'Hulabin' (here named low-fragrant Binzi, 'LFBZ') by monitoring the variation of volatiles and their precursors by Gas Chromatography-Mass Spectrometer (GC-MS), as well as their related genes by RNA-seq during post-harvest ripening. We firstly confirmed that 'HFBZ' and 'LFBZ' fruit showed respiratory climacteric by detecting respiratory rate and ethylene emission during post-harvest; found that esters were the major aroma components in 'HFBZ' fruit, and hexyl 2-methylbutyrate was responsible for the 'fruity' note and most potent aroma component, followed by ethyl acetate, ethyl butanoate, (E)-2-hexenal, and 1-hexanol. Regarding aroma synthesis, fatty acid metabolism seemed to be more important than amino acid metabolism for aroma synthesis in 'HFBZ' fruit. Based on RNA-seq and quantitative reverse transcription PCR (RT-qPCR), LOX2a, LOX5a, ADH1, and AAT1 genes are pointed to the LOX pathway, which may play a vital role in the aroma formation of 'HFBZ' fruit. CONCLUSION: Our study firstly investigated the aroma components and related genes of Binzi fruit, and provided an insight into the fragrant nature of Malus species.


Asunto(s)
Malus , Compuestos Orgánicos Volátiles , Malus/genética , Odorantes/análisis , Frutas/metabolismo , Ésteres/metabolismo , Cromatografía de Gases , Compuestos Orgánicos Volátiles/metabolismo
10.
Front Plant Sci ; 13: 1026571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388498

RESUMEN

A strawberry RIPK1, a leu-rich repeat receptor-like protein kinase, is previously demonstrated to be involved in fruit ripening as a positive regulator; however, its role in vegetable growth remains unknown. Here, based on our first establishment of Agrobacterium-mediated transformation of germinating seeds in diploid strawberry by FvCHLH/FvABAR, a reporter gene that functioned in chlorophyll biosynthesis, we got FvRIPK1-RNAi mutants. Downregulation of FvRIPK1 inhibited plant morphogenesis, showing curled leaves; also, this silencing significantly reduced FvABAR and FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts. Interestingly, the downregulation of the FvCHLH/ABAR expression could not affect FvRIPK1 transcripts but remarkably reduced FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts in the contrast of the non-transgenic plants to the FvCHLH/FvABAR-RNAi plants, in which chlorophyll contents were not affected but had abscisic acid (ABA) response in stomata movement and drought stress. The distinct expression level of FvABI1 and FvABI4, together with the similar expression level of FvSnRK2.2 and FvSnRK2.6 in the FvRIPK1- and FvABAR/CHLH-RNAi plants, suggested that FvRIPK1 regulated plant morphogenesis probably by ABA signaling. In addition, FvRIPK1 interacted with FvSnRK2.6 and phosphorylated each other, thus forming the FvRIPK1-FvSnRK2.6 complex. In conclusion, our results provide new insights into the molecular mechanism of FvRIPK1 in plant growth.

11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077443

RESUMEN

Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.


Asunto(s)
Solanum lycopersicum , Aclimatación , Aminoácidos , Frío , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Indenos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
RSC Adv ; 12(13): 7780-7788, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424721

RESUMEN

Two organometallic complexes with two and three-dimensional architectures were constructed by using multiple ligands and Zn(ii) ions: [Zn3(BTC)2(DTP)4(H2O)2]·(H2O)4 (Zn-1) (BTC = benzene-1,3,5-tricarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine) and [Zn2(NTD)2(DTP)] (Zn-2) (NTD = 1,4-naphthalenedicarboxylic acid). The as-prepared complexes were characterized by single-crystal X-ray diffraction (SCXRD), elemental analysis, powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and fluorescence analysis. Fluorescence sensing tests revealed that the two complexes are effective, sensitive and selective toward cationic Fe3+ and anionic MnO4 - and Cr2O7 2-. During the antibiotic sensing process, cefixime (CFX) for Zn-1 and nitrofurantoin (NFT) for Zn-2 exhibited the highest quenching efficiencies. For sensing pesticides, the highest quenching efficiencies were exhibited by imidacloprid (IMI) toward Zn-1 and Zn-2. The fluorescence quenching of the complexes that was induced by antibiotics, pesticides and MnO4 - was attributed to both the inner filter effect (IFE) and the fluorescence resonance energy transfer (FRET) effect.

13.
Front Plant Sci ; 12: 610313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664757

RESUMEN

Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.

14.
Front Plant Sci ; 12: 620018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692815

RESUMEN

Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.

15.
J Integr Plant Biol ; 63(3): 553-569, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33421307

RESUMEN

Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Common fig (Ficus carica) shows a dual-ripening mechanism, which is not fully understood. Here, we detected separate peaks of ethylene and ABA in fig fruits at the onset- and on-ripening stages, in conjunction with a sharp rise in glucose and fructose contents. In a newly-designed split-fruit system, exogenous ethylene failed to rescue fluridone-inhibited fruit ripening, whereas exogenous ABA rescued 2-amino-ethoxy-vinyl glycine (AVG)-inhibited fruit ripening. Transcriptome analysis revealed changes in the expression of genes key to both ABA and ethylene biosynthesis and perception during fig fruit ripening. At the de-greening stage, downregulation of FcACO2 or FcPYL8 retarded ripening, but downregulation of FcETR1/2 did not; unexpectedly, downregulation of FcAAO3 promoted ripening, but it inhibited ripening only before the de-greening stage. Furthermore, we detected an increase in ethylene emissions in the FcAAO3-RNAi ripening fruit and a decrease in ABA levels in the FcACO2-RNAi unripening fruit. Importantly, FcPYL8 can bind to ABA, suggesting that it functions as an ABA receptor. Our findings support the hypothesis that ethylene regulates the fig fruit ripening in an ABA-dependent manner. We propose a model for the role of the ABA-ethylene interaction in climacteric/non-climacteric processes.


Asunto(s)
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ficus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Agrobacterium/metabolismo , Análisis por Conglomerados , Ficus/anatomía & histología , Ficus/genética , Ficus/fisiología , Frutas/anatomía & histología , Frutas/genética , Frutas/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , RNA-Seq
16.
Front Plant Sci ; 12: 764625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154173

RESUMEN

Liriope spicata is an evergreen perennial ornamental groundcover with a strong freezing tolerance. However, the molecular mechanism underlying the freezing tolerance in L. spicata remains unclear. In this study, a comprehensive investigation of L. spicata freezing tolerance was conducted at the levels of physiology and biochemistry, metabolite, and transcript during the stress treatment. There were 581 unique differentially expressed metabolites (DEMs) and 10,444 unique differentially expressed genes (DEGs) between freezing treatment and normal cultured plant in leaves. Integrated analysis of metabolomics and transcriptomics showed that flavonoid biosynthesis, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways were prominently enriched in response to the freezing stress in L. spicata. Now, we identified genes and metabolites involved in the flavonoid pathway, abscisic acid (ABA) biosynthesis, and the oxidative synthesis pathway of nitric oxide (NO), which may form a regulatory network and play a synergistic effect in osmotic adjustment, reactive oxygen species (ROS) homeostasis, and stomatal closure under freezing stress. These results offer a comprehensive network of flavonoids, ABA, and NO comodulating the freezing tolerance in L. spicata.

17.
Front Plant Sci ; 11: 892, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625229

RESUMEN

Abscisic acid (ABA) plays important roles in many aspects of plant growth and development, and responses to diverse stresses. Although much progress has been made in understanding the molecular mechanisms of ABA homoeostasis and signaling, the mechanism by which plant cells integrate ABA trafficking and signaling to regulate plant developmental processes is poorly understood. In this study, we used Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE 2/RIPENING-REGULATED PROTEIN 1 (SCD2/RRP1) mutants and overexpression plants, in combination with transcriptome and protein-interaction assays, to investigate SCD2/RRP1 involvement in the integration of ABA trafficking and signaling in seed germination and seedling growth. Manipulation of SCD2/RRP1 expression affected ABA sensitivity in seed germination and seedling growth, as well as transcription of several ABA transporter genes and ABA content. RNA-sequencing analysis of Arabidopsis transgenic mutants suggested that SCD2/RRP1 was associated with ABA signaling via a type 2C protein phosphatase (PP2C) protein. The N- and C-terminal regions of SCD2/RRP1 separately interacted with both PYRABACTIN RESISTANCE 1 (PYR1) and ABA INSENSITIVE 1 (ABI1) on the plasma membrane, and SCD2/RRP1 acted genetically upstream of ABI1. Interestingly, ABA inhibited the interaction of SCD2/RRP1 with ABI1, but did not affect the interaction of SCD2/RRP1 with PYR1. These results suggested that in Arabidopsis SCD2/RRP1participates in early seed development and growth potentially through clathrin-mediated endocytosis- and clathrin-coated vesicle-mediated ABA trafficking and signaling. These findings provide insight into the mechanism by which cells regulate plant developmental processes through ABA.

18.
Front Plant Sci ; 11: 619953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505417

RESUMEN

The ripening of fleshy fruits is coupled with the degradation of both chlorophyll and cell walls, as well as changes in the metabolism of phenylpropanoids, flavonoids, starch/sucrose, and carotenoids. These processes are controlled by phytohormones and other factors, including abscisic acid (ABA), ethylene, auxin, polyamines, sugar, and reactive oxygen species. The ripening of climacteric fruits is controlled by ethylene and non-climacteric fruit ripening is regulated mainly by ABA. Also, ABA and ethylene may interact in both types of fruit ripening. ABA concentrations in fleshy fruits are regulated in response to developmental and environmental cues and are controlled by the relative rates of ABA biosynthesis and catabolism, the former mainly via 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ß-glucosidases and the latter via ABA 8'-hydroxylases (CYP707As) and ß-glycosyltransferases. In strawberry fruit ripening, ABA is perceived via at least two receptors, Pyrabactin resistance (PYR)/PYR-like (PYL) and putative abscisic acid receptor (ABAR), which are linked separately to the conserved signaling pathway ABA-FaPYR1-FaABIl-FaSnRK2 and the novel signaling pathway ABA-FaABAR-FaRIPK1-FaABI4. Downstream signaling components include important transcription factors, such as AREB (ABA responsive element binding protein)/ABF (ABRE binding factors ABA responsive factor), ethylene response factor (ERF), and V-myb Myeloblastosis viral oncogene homolog (MYB), as well as ripening-related genes. Finally, a comprehensive model of ABA linked to ethylene, sugar, polyamines, auxin and reactive oxygen species in the regulation of strawberry fruit ripening is proposed. Next, new integrated mechanisms, including two ABA signaling pathways, ABA and ethylene signaling pathways, and ABA/ethylene to other phytohormones are interesting and important research topics in ripening, especially in non-climacteric fruits.

19.
Plant Cell Environ ; 42(9): 2715-2729, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31151133

RESUMEN

Phosphorus (P) is essential for plant growth and development, and the vacuole is an important organelle for phosphate storage. However, the tonoplast phosphate transporter in fleshy fruits remains unknown. In this study, based on the strawberry (Fragaria × ananassa) fruit transcriptome data, a tonoplast-localized vacuolar phosphate transporter with SPX and major facilitator superfamily domains, FaVPT1, was identified. FaVPT1 expression was highest in the fruits and could be induced by sucrose. Using transient transgenic systems in strawberry fruit, the downregulation and upregulation of FaVPT1 inhibited and promoted ripening, respectively, and affected phosphate contents, fruit firmness, sugar and anthocyanin contents, and ripening-related gene transcription. FaVPT1 could rescue Pi absorption in both yeast and the Arabidopsis atvpt1 mutant, confirming the similar function of FaVPT1 and AtVPT1, a previously identified tonoplast phosphate transporter in Arabidopsis. The Escherichia coli-expressed SPX domain of FaVPT1 could strongly bind to InsP6 with a Kd of 3.5 µM. The results demonstrate that FaVPT1 is a tonoplast phosphate transporter and regulates strawberry fruit ripening and quality, to a large extent, via sucrose.


Asunto(s)
Fragaria/metabolismo , Frutas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Fosfato/genética
20.
BMC Plant Biol ; 18(1): 162, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097017

RESUMEN

BACKGROUND: Ripening of fleshy fruits has been classically defined as climacteric or non-climacteric. Both types of ripening are controlled by plant hormones, notably by ethylene in climacteric ripening and by abscisic acid (ABA) in non-climacteric ripening. In pepper (Capsicum), fruit ripening has been widely classified as non-climacteric, but the ripening of the hot pepper fruit appears to be climacteric. To date, how to regulate the hot pepper fruit ripening through ethylene and ABA remains unclear. RESULTS: Here, we examined ripening of the hot pepper (Capsicum frutescens) fruit during large green (LG), initial colouring (IC), brown (Br), and full red (FR) stages. We found a peak of ethylene emission at the IC stage, followed by a peak respiratory quotient at the Br stage. By contrast, ABA levels increased slowly before the Br stage, then increased sharply and reached a maximum level at the FR stage. Exogenous ethylene promoted colouration, but exogenous ABA did not. Unexpectedly, fluridone, an inhibitor of ABA biosynthesis, promoted colouration. RNA-sequencing data obtained from the four stages around ripening showed that ACO3 and NCED1/3 gene expression determined ethylene and ABA levels, respectively. Downregulation of ACO3 and NCED1/3 expression by virus-induced gene silencing (VIGS) inhibited and promoted colouration, respectively, as evidenced by changes in carotenoid, ABA, and ethylene levels, as well as carotenoid biosynthesis-related gene expression. Importantly, the retarded colouration in ACO3-VIGS fruits was rescued by exogenous ethylene. CONCLUSIONS: Ethylene positively regulates the hot pepper fruit colouration, while inhibition of ABA biosynthesis promotes colouration, suggesting a role of ABA in de-greening. Our findings provide new insights into processes of fleshy fruit ripening regulated by ABA and ethylene, focusing on ethylene in carotenoid biosynthesis and ABA in chlorophyll degradation.


Asunto(s)
Ácido Abscísico/metabolismo , Capsicum/crecimiento & desarrollo , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/fisiología , Capsicum/metabolismo , Capsicum/fisiología , Frutas/metabolismo , Frutas/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Plantas Modificadas Genéticamente , Análisis de Secuencia de ARN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...