Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Future Oncol ; : 1-12, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38861299

RESUMEN

Aim: The prognosis of high-risk, locally advanced cervical cancer (LACC) remains poor following concurrent chemoradiotherapy (CCRT). We investigated whether the effect of CCRT can be enhanced by programmed cell death protein 1 (PD-1) inhibitor. Methods: A retrospective cohort study was conducted to compare the efficacy and safety of CCRT group (n = 82) and PD-1 inhibitor plus CCRT group (n = 70). Results: Compared with the CCRT group, the PD-1 inhibitor plus CCRT group had significantly higher objective response rate, median progression-free survival, leukopenia and fatigue. The addition of PD-1 inhibitor to CCRT showed a favorable trend in overall survival without statistical significance. Conclusion: PD-1 inhibitor plus CCRT presented a significant survival benefit and a manageable safety profile in high-risk LACC.


[Box: see text].

2.
Int Immunopharmacol ; 117: 109827, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36989973

RESUMEN

BACKGROUND: Therapeutic options for small cell lung cancer (SCLC), a particularly lethal malignancy, remain limited. Members of the B7-CD28 family are compelling targets for immune checkpoint blockade strategies, which involve activating, inhibiting, and fine-tuning the T cell immune response. However, their clinical features and significance have not been explored comprehensively. METHOD: We enrolled 228 patients with an initial diagnosis of SCLC, including 77 cases from Cbioportal and a validation cohort of 151 cases with qPCR data. Kaplan-Meier analysis and LASSO Cox model were used to identify a signature based on the B7-CD28 family, which was applied for accurate prediction of chemotherapy benefit and prognosis for SCLC patients. In addition, we applied bioinformatics analysis to explore potential signature-related molecular mechanisms and the immune landscape. RESULTS: The mutation profiles of healthy tissues and SCLC tissues were distinct. A signature consisting of seven genes (CD86, ICOSLG, CD276, CD28, CTLA-4, PDCD1, and TMIGD2) was identified and applied to group patients based on risk level (high-risk and low-risk), producing two groups for which survival outcomes differed significantly (HR = 3.81, 95% CI: 2.16-6.74, P < 0.001). The immune checkpoint-based signature accurately predicted patient outcomes for the selected training and validation sets. Notably, low-risk patients were more likely to benefit from chemotherapy and showed greater immune activation. Additionally, time-dependent ROC curves and C-index analysis confirmed that the immune checkpoint-based signature has excellent predictive power for prognosis and chemotherapy benefit compared to clinically recognized parameters. Finally, multivariate analysis confirmed the identified signature as an independent risk factor for prognosis and chemotherapeutic response. CONCLUSION: We systematically obtained a comprehensive molecular profile for B7-CD28 family members in SCLC patients, from which we produced a reliable and robust prognostic immune checkpoint-based signature with the potential to improve prognostic stratification and therapy strategies for SCLC patients.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Antígenos CD28/genética , Pronóstico , Factores de Transcripción , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Antígenos B7
3.
Br J Cancer ; 128(7): 1223-1235, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646807

RESUMEN

BACKGROUND: Mental stress-induced neurotransmitters can affect the immune system in various ways. Therefore, a better understanding of the role of neurotransmitters in the tumour immune microenvironment is expected to promote the development of novel anti-tumour therapies. METHODS: In this study, we analysed the plasma levels of neurotransmitters in anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb)-resistance patients and sensitive patients, to identify significantly different neurotransmitters. Subsequently, animal experiments and experiments in vitro were used to reveal the specific mechanism of norepinephrine's (NE) effect on immunotherapy. RESULTS: The plasma NE levels were higher in anti-PD-1 mAb-resistance patients, which may be the main cause of anti-PD-1 mAb resistance. Then, from the perspective of the immunosuppressive microenvironment to explore the specific mechanism of NE-induced anti-PD-1 mAb resistance, we found that NE can affect the secretion of C-X-C Motif Chemokine Ligand 9 (CXCL9) and adenosine (ADO) in tumour cells, thereby inhibiting chemotaxis and function of CD8+ T cells. Notably, the WNT7A/ß-catenin signalling pathway plays a crucial role in this progression. CONCLUSION: NE can affect the secretion of CXCL9 and ADO in tumour cells, thereby inhibiting chemotaxis and the function of CD8+ T cells and inducing anti-PD-1 mAb resistance in lung adenocarcinoma (LUAD).


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Linfocitos T CD8-positivos , Norepinefrina/farmacología , Línea Celular Tumoral , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Microambiente Tumoral
4.
Cell Death Dis ; 13(11): 951, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357365

RESUMEN

The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1) plays a role in the progression of various tumors, emerging as a potential therapeutic target. This study aimed to determine the role of USP1 as a therapeutic target in hepatocellular carcinoma (HCC). We detected USP1 expression in the tumor and adjacent tissues of patients with HCC using immunohistochemical staining. We evaluated the effect of the USP1 inhibitor ML-323 on HCC cell proliferation and cell cycle using a CCK-8 cell-counting kit and plate cloning assays, and propidium iodide, respectively. Apoptosis was detected by annexin V-FITC/Propidium Iodide (PI) staining and caspase 3 (casp3) activity. Transmission electron microscopy and LC3B immunofluorescence were used to detect autophagy. Western blotting was used to detect the accumulation of ubiquitinated proteins, the expression of endoplasmic reticulum (ER) stress-related proteins, and the AMPK-ULK1/ATG13 signaling pathway. We demonstrated that ML-323 inhibits the growth of HCC cells and induces G1 phase cell cycle arrest by regulating cyclin expression. ML-323 treatment resulted in the accumulation of ubiquitinated proteins, induced ER stress, and triggered Noxa-dependent apoptosis, which was regulated by the Activating Transcription Factor 4(ATF4). Moreover, active ER stress induces protective autophagy by increasing AMPK phosphorylation; therefore, we inhibited ER stress using 4-Phenylbutyric acid (4-PBA), which resulted in ER stress reduction, apoptosis, and autophagy in ML-323-treated HCC cells. In addition, blocking autophagy using the AMPK inhibitor compound C (CC), chloroquine (CQ), or bafilomycin A1 (BafA1) enhanced the cytotoxic effect of ML-323. Our findings revealed that targeting USP1 may be a potential strategy for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Agregado de Proteínas , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Ubiquitinadas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Propidio/farmacología , Estrés del Retículo Endoplásmico , Autofagia , Apoptosis , Línea Celular Tumoral , Proteasas Ubiquitina-Específicas
5.
J Immunol Res ; 2022: 9544827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983077

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is one of the most usual types of adult lymphoma with heterogeneousness in histological morphology, prognosis, and clinical indications. Prior to this, several studies were carried out to determine the DLBCL subtype based on the analysis of the genome profile. However, classification based on assessment of genes related to the immune system has limited clinical significance for DLBCL. We systematically explored the DLBCL gene expression dataset and provided publicly available clinical information on patients with GEO. In this research, 928 DLBCL samples were applied, and we calculated 29 immune-related genomes' enrichment levels in each sample and stratified them into high immunity (Immunity_H, n = 135, 28.7%), moderate immunity (Immunity_M, n = 135, 28.7%), and low immunity (Immunity_L, n = 12, 2.6%) that was based on ssGSEA score. The ESTIMATE algorithm was used to calculate stromal scores (range 586.88 to 1982.43), immune scores, estimated scores (range 2,618.2 to 8,098.14), and tumor purity (range 0.216 to 0.976). All of them were significantly correlated with immune subtypes (Kruskal-Wallis test, p < 0.001). At the same time, the correlation of related genes was analyzed by immunohistochemistry staining. In addition, DLBCL cells were cultured in transfected and in vitro with siRNA to verify correlation analysis and gene expression. Finally, human peripheral blood lymphocytes were incubated with DLBCL cells and stained. Flow cytometry was applied to analyze genes' influence on immune function. By analysis, immune checkpoint and HLA gene expression levels were higher in the Immunity_H group (Kruskal-Wallis test, p < 0.05). The levels of Tfhs (follicular helper T cells), monocytes, CD8+ T cells, M1 macrophages, M2 macrophages, and CD4+ memory-activated T cells were the most excellent in Immunity_H, and the total survival rate was higher in the Immunity_L. Through analysis, IRF4 (MUM1) was identified by us as immunotherapeutic target and a potential prognostic marker for DLBCL, which was made sure by using molecular biology experimentations. To conclude, immunosignature made a connection between DLBCL subtypes playing a position in DLBCL prognostic stratification. Immunocharacteristics-related DLBCL subtypes' construction predicts expected patient results and supplies conceivable immunotherapy candida.


Asunto(s)
Linfocitos T CD8-positivos , Linfoma de Células B Grandes Difuso , Adulto , Análisis por Conglomerados , Humanos , Linfocitos/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Pronóstico
8.
Chin J Nat Med ; 19(12): 930-943, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34961591

RESUMEN

Oral mucositis (OM) caused by cancer therapy is the most common adverse reaction in the radiotherapy of head and neck tumors. In severe cases, it can lead to the interruption of treatment, which affects the control of the disease and the quality of life. Shuanghua Baihe Tablet (SBT) is a traditional Chinese medicine (TCM) formula, which is administerd to treat OM in China. It has been clinically effective for more than 30 years, but the underlying mechanism is not completely understood. With the development of multiple omics, it is possible to explore the mechanism of Chinese herbal compound prescriptions. Based on transcriptomics and metabolomics, we explored the underlying mechanism of SBT in the treatment of OM. An OM model of rats was established by 5-FU induction, and SBT was orally administered at dosages of 0.75 and 3 g·kg-1·d-1. In order to search for SBT targets and related metabolites, the dysregulated genes and metabolites were detected by transcriptomics and metabolomics. Immune related indicators such as interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were detected by ELISA. Treg cell disorders was analyzed by flow cytometry. Our results showed that SBT significantly alleviated the symptoms of OM rats and the inflammatory infiltration of ulcer tissues. After SBT administration, inflammatory related metabolic pathways including linoleic acid metabolism, valine, leucine and isoleucine biosynthesis were significantly altered. Furthermore, the production of proinflammatory factors like IL-17 and TNF-α, were also dramatically reduced after SBT administration. Besides, the infiltration degree of Treg cells in the spleen of OM modeling rats was significantly improved by SBT administration, thus maintaining the immune balance of the body. The current study demonstrates that SBT regulates inoleic acid metabolism, glycerophospholipid metabolism and amino acid metabolism, and inhibits IL-17/TNF signal transduction to restore Treg and Th17 cell homeostasis in OM rats, thereby alleviating chemotherapy-induced OM.


Asunto(s)
Medicamentos Herbarios Chinos , Estomatitis , Animales , Metaboloma , Calidad de Vida , Ratas , Comprimidos , Transcriptoma
9.
Cell Transplant ; 30: 9636897211049813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719974

RESUMEN

Cancer is the leading cause of disease-related death worldwide due to its late diagnosis and poor outcomes. Precision medicine plays an important role in the treatment of tumors. As found for many types of tumors, mental stress plays a vital role in the promotion and progression of tumors. In this paper, we briefly introduce the manifestation and effects of mental symptoms in tumor patients. We next specifically discuss the multiple roles of precision medicine in the tumor therapy. Finally, we also highlight the precision medicine strategy for psychiatric symptoms in tumor patients, which promises to enhance the efficacy of tumor therapy.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/psicología , Medicina de Precisión/métodos , Estrés Psicológico/tratamiento farmacológico , Humanos
10.
Cancer Manag Res ; 13: 7989-8002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707405

RESUMEN

BACKGROUND: The 5-methylcytosine (m5C) is one of the important forms of RNA post modification, and its regulatory mechanism in tumors has received increasing attention. However, its potential role in colorectal cancer remains unclear. MATERIALS AND METHODS: Here, we systematically investigated the genetic variation and prognostic value of the 14 m5c RNA methylation regulators in colon cancer. The prognostic risk score was constructed using three m5C regulators, which was verified in the GSE17536 (N=177), GSE41258 (N=248) and GSE38832 (N=122) datasets. RESULTS: The risk score developed from the three-m5C signature represents an independent prognostic factor, which can accurately predict the prognosis of patients with colon cancer in multiple datasets. The cytokine-cytokine receptor interaction and chemokine signaling pathway were significantly enriched in the low-risk score group. Further analysis showed that the three-m5C signature was related to tumor immune microenvironment (TIME), affecting the abundance of tumor-infiltrating immune cells. Especially, patients with low risk score had higher immune score than those with high risk score. In addition, gene set enrichment analysis (GSEA) confirmed that all three regulatory factors are associated with the MAPK/p38 signaling pathway. CONCLUSION: In conclusion, our study illustrates that the three-m5C signature may be involved in the regulation of colon cancer immune microenvironment in synergy with the MAPK signaling pathway. Therefore, further studying the three-m5C signature regulatory mechanisms might provide promising targets for improving the responsiveness of colon cancer to immunotherapy.

11.
Cancer Cell Int ; 21(1): 374, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261467

RESUMEN

BACKGROUND: Hepatocyte growth factor (HGF) binds to the c-mesenchymal-epithelial transition (C-MET) receptor and activates downstream signaling pathways, playing an essential role in the development of various cancers. Given the role of this signaling pathway, the primary therapeutic direction focuses on identifying and designing HGF inhibitors, antagonists and other molecules to block the binding of HGF to C-MET, thereby limiting the abnormal state of other downstream genes. METHODS: This study focuses on the analysis of immune-related genes and corresponding immune functions that are significantly associated with the HGF/c-MET pathway using transcriptome data from 11 solid tumors. RESULTS: We systematically analyzed 11 different cancers, including expression correlation, immune infiltration, tumor diagnosis and survival prognosis from HGF/c-MET pathway and immune regulation, two biological mechanisms having received extensive attention in cancer analysis. CONCLUSION: We found that the HGF/c-MET pathway affected the tumor microenvironment mainly by interfering with expression levels of other genes. Immune infiltration is another critical factor involved in changes to the tumor microenvironment. The downstream immune-related genes activated by the HGF/c-MET pathway regulate immune-related pathways, which in turn affect the degree of infiltration of immune cells. Immune infiltration is significantly associated with cancer development and prognosis.

12.
PeerJ ; 9: e11145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33850663

RESUMEN

OBJECTIVE: Lung cancer (LC) is one of the top ten malignant tumors and the first leading cause of cancer-related death among both men and women worldwide. It is imperative to identify immune-related biomarkers for early LC diagnosis and treatment. METHODS: Three Gene Expression Omnibus (GEO) datasets were selected to acquire the differentially expressed genes(DEGs) between LC and normal lung samples through GEO2R tools of NCBI. To identify hub genes, the DEGs were performed functional enrichment analysis, the protein-protein interaction (PPI) network construction, and Lasso regression. Then, a nomogram was constructed to predict the prognosis of patients with carcinoma based on hub genes. We further evaluated the influence of COL1A1 on clinical prognosis using GSE3141, GSE31210, and TCGA database. Also, the correlations between COL1A1 and cancer immune infiltrates and the B7-CD28 family was investigated via TIMER and GEPIA. Further analysis of immunohistochemistry shown that the COL1A1 expression level is positively correlated with CD276 expression level. RESULTS: By difference analysis, there were 340 DEGs between LC and normal lung samples. Then, we picked out seven hub genes, which were identified as components of the risk signature to divide LC into low and high-risk groups. Among them, the expression of COL1A1 is highly correlated with overall survival(OS) and progression-free survival (PFS) (p < 0.05). Importantly, there is a moderate to strong positive relationships between COL1A1 expression level and infiltration level of CD4+ T cells, Macrophage, Neutrophil, and Dendritic cell, as well as CD276 expression level. CONCLUSION: These findings suggest that COL1A1 is correlated with prognosis and immune infiltrating levels, including CD4+ T cells, Macrophage, Neutrophil, and Dendritic cell, as well as CD276 expression level, indicating COL1A1 can be a potential immunity-related biomarker and therapeutic target in LC.

13.
Mol Ther Nucleic Acids ; 23: 592-602, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33552680

RESUMEN

The nuclear receptor-binding SET domain (NSD) protein family encoding histone lysine methyltransferases is involved in cancer progression. However, the role of NSDs in esophageal squamous cell carcinoma (ESCC) remains unclear. Here we examined the expression of NSDs in cisplatin-resistant and parental ESCC cells and revealed the upregulation of NSD2 in cisplatin-resistant cells. Ectopic expression of NSD2 increased cisplatin resistance and attenuated cisplatin-induced apoptosis. Colony formation assay indicated that NSD2 overexpression enhanced long-term survival of ESCC cells after treatment with cisplatin. In contrast, knockdown of NSD2 inhibited ESCC cell proliferation and sensitized ESCC cells to cisplatin. Depletion of NSD2 augmented the cytotoxic effect of cisplatin on EC109 xenograft tumors. NSD2 stimulated long non-coding RNA MACC1-AS1 in ESCC cells. Knockdown of MACC1-AS1 impaired NSD2-induced cisplatin resistance. Moreover, MACC1-AS1 overexpression promoted ESCC cell proliferation and cisplatin resistance. Clinically, MACC1-AS1 was upregulated in ESCC relative to adjacent noncancerous tissues. High MACC1-AS1 levels were significantly associated with reduced overall survival of ESCC patients. There was a positive correlation between MACC1-AS1 and NSD2 expression in ESCC specimens. Taken together, MACC1-AS1 induced by NSD2 mediates resistance to cisplatin in ESCC and may represent a novel target to improve cisplatin-based chemotherapy.

14.
Cancer Commun (Lond) ; 41(5): 371-388, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605567

RESUMEN

Esophageal cancer (EC) is one of the most common malignant tumors of the digestive system with high incidence and mortality rate worldwide. Therefore, exploring the pathogenesis of EC and searching for new targeted therapies are the current research hotspot for EC treatment. Long non-coding RNAs (lncRNAs) are endogenous RNAs with more than 200 nucleotides, but without protein-coding function. In recent years, lncRNAs have gradually become the focuses in the field of non-coding RNA. Some lncRNAs have been proved to be closely related to the pathogenesis of EC. Many lncRNAs are abnormally expressed in EC and participate in many biological processes including cell proliferation, apoptosis, and metastasis by inhibiting or promoting target gene expression. LncRNAs can also regulate the progression of EC through epithelial-mesenchymal transformation (EMT), which is closely related to the occurrence, development, and prognosis of EC. In this article, we review and discuss the involvement of lncRNAs in the progression of EC.


Asunto(s)
Neoplasias Esofágicas , ARN Largo no Codificante , Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , ARN Largo no Codificante/genética
15.
Int J Cardiol ; 328: 182-190, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33352151

RESUMEN

BACKGROUND: Myocardial Infarction (MI) is a fatal cardiovascular system disease. At present, the diagnosis of MI patients is mainly based on the patient's clinical manifestations, dynamic changes in electrocardiogram (ECG), and changes in myocardial enzymes. ECG is insufficient to diagnose an acute coronary syndrome or acute myocardial infarction, since ST-segment deviation might be also present in other conditions, such as acute pericarditis and early repolarization patterns. Given the low specificity and effectiveness of the current diagnostic strategies, an accurate diagnostic approach based on the level of gene expression is urgently needed in the clinic. METHODS AND RESULTS: We compared the gene's expression between MI patients and normal samples. The RNAseq data were downloaded from the GEO database. Differentially expressed genes underwent a feature selection process, and the signatures were selected to train a machine-learning model. In this study, we identified the risk genes associated with MI as signatures and uses the SVM to establish a diagnostic model. The accuracy of the model on discovery data is 0.87, which significantly improves the diagnostic efficiency of early detection of MI patients (MIPs). Two independent datasets were applied to verify the diagnostic model. Our model can effectively distinguish the control group from the disease group. CONCLUSIONS: We used risk genes to construct a diagnostic model for MI diagnosis, which can effectively distinguish MIPs from normal samples in the both of the discovery data and validation data. In the validation data, we found that percutaneous coronary intervention could indeed reverse MI to a certain extent, and the gene expression level of patients treated with percutaneous coronary intervention (PCI) was closer to the normal state.


Asunto(s)
Síndrome Coronario Agudo , Infarto del Miocardio , Intervención Coronaria Percutánea , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/genética , Electrocardiografía , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Máquina de Vectores de Soporte , Resultado del Tratamiento
16.
Front Mol Biosci ; 8: 770624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155561

RESUMEN

Background: Fatty acid transporters (FATPs) family play an important role in the uptake and metabolism regulation of long-chain fatty acids, which influence the occurrence and developing of multiple tumors. Fatty acid transporter 5(FATP5), a member of FATPs family, participates in fatty acid transport and lipid metabolism and is related to tumor development, whose mechanism in colorectal cancer (CRC) remains unclear. Methods: In this study, we comprehensively utilized a range of relevant bioinformatic tools along with multiple databases to analyze the expression of FATPs family and investigate the biological function and prognostic value of FATP5 in CRC. Besides, cell proliferation and cell cycle distribution analysis, western blotting and immunohistochemistry (IHC) further validated the conclusion of bioinformatics analysis. Results: FATP5 is the only member of FATPs family which was overexpressed in CRC. In the survival analysis based on the GSE39582 databases, the low expression of FATP5 predicts poor prognosis in CRC. Similar results were also observed in GSE17536, GSE28814 and TCGA colon cohorts. The potential function of DNA methylation regulated the abnormal expression of FATP5 in CRC. In addition, enrichment analysis indicated that FATP5 also participates in the regulation of cell cycle. Furthermore, Gene Set Enrichment Analysis (GSEA) showed a strong negative correlation between FATP5 and cell growth, implying that it may participate in regulating cancer cell proliferation by the regulation of cell cycle G2/M transition. At last, we identified that FATP5 was overexpressed in colorectal carcinoma tissues through immunohistochemistry staining, and played an important role in cell cycle by cell proliferation and cell cycle distribution analysis. Conclusion: This study suggested that FATP5 was overexpression in colorectal carcinoma and predicted favorable prognosis, indicating it as a novel appealing prognostic marker for CRC.

17.
Front Med (Lausanne) ; 8: 812278, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35141255

RESUMEN

BACKGROUND: Thyroid cancer (THCA) is a malignancy affecting the endocrine system, which currently has no effective treatment due to a limited number of suitable drugs and prognostic markers. METHODS: Three Gene Expression Omnibus (GEO) datasets were selected to identify differentially expressed genes (DEGs) between THCA and normal thyroid samples using GEO2R tools of National Center for Biotechnology Information. We identified hub gene FN1 using functional enrichment and protein-protein interaction network analyses. Subsequently, we evaluated the importance of gene expression on clinical prognosis using The Cancer Genome Atlas (TCGA) database and GEO datasets. MEXPRESS was used to investigate the correlation between gene expression and DNA methylation; the correlations between FN1 and cancer immune infiltrates were investigated using CIBERSORT. In addition, we assessed the effect of silencing FN1 expression, using an in vitro cellular model of THCA. Immunohistochemical(IHC) was used to elevate the correlation between CD276 and FN1. RESULTS: FN1 expression was highly correlated with progression-free survival and moderately to strongly correlated with the infiltration levels of M2 macrophages and resting memory CD4+ T cells, as well as with CD276 expression. We suggest promoter hypermethylation as the mechanism underlying the observed changes in FN1 expression, as 20 CpG sites in 507 THCA cases in TCGA database showed a negative correlation with FN1 expression. In addition, silencing FN1 expression suppressed clonogenicity, motility, invasiveness, and the expression of CD276 in vitro. The correlation between FN1 and CD276 was further confirmed by immunohistochemical. CONCLUSION: Our findings show that FN1 expression levels correlate with prognosis and immune infiltration levels in THCA, suggesting that FN1 expression be used as an immunity-related biomarker and therapeutic target in THCA.

18.
Mol Ther Oncolytics ; 18: 215-225, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32728610

RESUMEN

Therapeutic targeting of advanced or metastatic non-small-cell lung cancer (NSCLC) represents a major goal of clinical treatment. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in cell cycle progression and is associated with oncogenesis in a large spectrum of cancer types, including NSCLC. Volasertib (BI 6727) is a potent, selective, PLK1 inhibitor that is currently under phase 2 clinical trials with modest antitumor activity against solid tumors. As the combination of volasertib with pemetrexed does not improve efficacy for NSCLC treatment, it is crucial to identify compounds that could enhance efficacy with volasertib. Immunomodulatory drugs (IMiDs) bind to E3 ligase CRBN and repurposes it to ubiquitinate other proteins as neo-substrates, representing an effective treatment for hematologic malignancies. In this study, by screening IMiDs, we found that a novel CRBN modulator, CC-885, can synergistically inhibit NSCLC with volasertib both in vitro and in vivo. This synergistic effect overcomes volasertib resistance caused by PLK1 mutations and is compromised in CRBN-or p97-depleted cells. Mechanistically, CC-885 selectively promotes CRBN- and p97-dependent PLK1 ubiquitination and degradation, thereby enhancing the sensitivity of NSCLC to volasertib. In conclusion, our findings reveal that PLK1 is a neo-substrate of CUL4-CRBN induced by CC-885 and represent a combinational approach for treating NSCLC.

19.
Signal Transduct Target Ther ; 5(1): 54, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32439898

RESUMEN

Hypoxia mediates a metabolic switch from oxidative phosphorylation to glycolysis and increases glycogen synthesis. We previously found that glycogen branching enzyme (GBE1) is downstream of the hypoxia-inducible factor-1 (HIF1) signaling pathway in lung adenocarcinoma (LUAD) cells; however, the molecular mechanism underlying HIF1 regulation of GBE1 expression remains unknown. Herein, the effect of GBE1 on tumor progression via changes in metabolic signaling under hypoxia in vitro and in vivo was evaluated, and GBE1-related genes from human specimens and data sets were analyzed. Hypoxia induced GBE1 upregulation in LUAD cells. GBE1-knockdown A549 cells showed impaired cell proliferation, clone formation, cell migration and invasion, angiogenesis, tumor growth, and metastasis. GBE1 mediated the metabolic reprogramming of LUAD cells. The expression of gluconeogenesis pathway molecules, especially fructose-1,6-bisphosphatase (FBP1), was markedly higher in shGBE1 A549 cells than it was in the control cells. FBP1 inhibited the tumor progression of LUAD. GBE1-mediated FBP1 suppression via promoter methylation enhanced HIF1α levels through NF-κB signaling. GBE1 may be a negative prognostic biomarker for LUAD patients. Altogether, hypoxia-induced HIF1α mediated GBE1 upregulation, suppressing FBP1 expression by promoter methylation via NF-κB signaling in LUAD cells. FBP1 blockade upregulated HIF1α, triggered the switch to anaerobic glycolysis, and enhanced glucose uptake. Therefore, targeting HIF1α/GBE1/NF-κB/FBP1 signaling may be a potential therapeutic strategy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/enzimología , Reprogramación Celular , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Sistema de la Enzima Desramificadora del Glucógeno/biosíntesis , Neoplasias Pulmonares/enzimología , Proteínas de Neoplasias/biosíntesis , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Hipoxia de la Célula/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética
20.
J Cancer ; 11(13): 3944-3954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328198

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most fatal diseases worldwide. Because early diagnosis is difficult, ESCC is mostly diagnosed at an advanced stage, leading to a poor overall prognosis. The purpose of this study was to explore the differences between plasma metabolic profiles in ESCC patients and healthy controls and to establish a diagnostic model of ESCC. Methods: In this study, a cohort of 310 subjects, containing 140 ESCC patients and 170 healthy controls (HC), was recruited. Participants were randomly separated into a training set (80 ESCCs, 80 HCs) and a validation set (60 ESCCs, 90 HCs) and their plasma metabolomics profiles were analyzed by ultra-performance liquid chromatography-tandem quadruple time-of-flight mass spectrometry (UPLC-QTOF/MS) technique. Univariate statistical analysis and multivariate analysis (MVA) methods were used to identify differential metabolites. Finally, the dysregulated pathways associated with ESCC were further explored and the diagnostic performance of the biomarker panel was evaluated. Results: Metabolic analyses identified 34 significant metabolites involved in the metabolism of amino acids, phospholipids, fatty acids, purine, and choline. Farthermore, an effective diagnostic model for ESCC was constructed based on eight metabolites. This panel of biomarkers consisted of hypoxanthine, proline betaine, indoleacrylic acid, inosine, 9-decenoylcarnitine, tetracosahexaenoic acid, LPE (20:4), and LPC (20:5). The model was verified and evaluated in the validation set. The AUC value of the ROC curve was 0.991(95% CI: 0.981-1.000, CI, Confidence interval), with a sensitivity (SE) of 98.8% and a specificity (SP) of 94.9% for the training set and 0.965(95% CI: 0.936-0.993), with a SE of 88.3% and a SP of 88.9% for the validation set. Among them, three biomarkers, indoleacrylic acid, LPC (20:5), and LPE (20:4), exhibited a trend associated with the ESCC progression. Conclusions: Our study identified a novel plasma biomarker panel, which clearly distinguishes ESCC patients and provides insight into the mechanisms of ESCC. This finding may form the basis for the development of a minimally invasive method for ESCC detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...