RESUMEN
The high incidence of adolescent depression has become the focus of social and academic attention. Exercise is an important method to improve adolescent depression, but its intervention effect is still controversial. This study first compares and analyzes the relevant studies at home and abroad and finds that exercise prescription in adolescent depression intervention is not accurate enough. A meta-analysis was conducted to develop a precise exercise intervention strategy for adolescent depression. Firstly, this thesis identified how to optimize five elements (exercise intensity, exercise frequency, exercise time, exercise cycle, and exercise type) of exercise prescription to improve depression in adolescents. This is the problem. Furthermore, the concept of "precision exercise" was proposed, and a precision exercise intervention strategy (moderate-intensity aerobic exercise for 8-10 weeks, 3 times/week, 45-50 min/time) was constructed to improve adolescent depression. This paper also presents research that strengthens the cross-sectional research and empirical research on adolescent depression and establishes a precision exercise prescription database for adolescent depression in China. In conclusion, this study not only puts forward the concept of "precision exercise" but also constructs a precision exercise intervention strategy for adolescent depression, which has important theoretical and practical significance for improving the high incidence of adolescent depression.
Asunto(s)
Depresión , Terapia por Ejercicio , Humanos , Adolescente , Estudios Transversales , Terapia por Ejercicio/métodos , Ejercicio Físico , ChinaRESUMEN
Background: Renal interstitial fibrosis is the pathophysiological basis of type 2 diabetes mellitus (T2DM). Exercise appears to improve kidney interstitial fibrosis in T2DM, in which silent information regulator factor 2-related enzyme 1 (Sirt1) is a critical regulator. However, the role of Sirt1 in mediating exercise on renal tissue as well as its mechanism remains unknown. Methods: T2DM mouse models were created using a high-fat diet mixed with streptozotocin, followed by 8 weeks of treadmill exercise and niacinamide (Sirt1 inhibitor) intervention. Kits for detecting biochemical indices of renal function were used. The pathological appearance and severity of renal tissue were examined using hematoxylin and eosin, Masson and immunohistochemical staining. The mRNA and protein expression of relevant signaling pathway factors were determined to use real-time reverse transcriptase-polymerase chain reaction and western blotting. Results: T2DM can promote renal interstitial fibrosis, increase kidney index, serum creatinine, blood urea nitrogen and 24 h urinary total protein and cause pathological changes in renal tissue and affect renal function. After 8 weeks of exercise intervention, the biochemical indicators in the kidney of T2DM mice were decreased, Sirt1 expression was increased, the expression of TGF-ß1, Smad3, collagen type I (COL1) and collagen type III (COL3) were decreased, and the renal interstitial fibrosis, renal tissue structural lesions and renal function were improved. However, after the nicotinamide intervention, renal interstitial fibrosis of T2DM mice was aggravated, and the improvement effect of exercise on renal interstitial fibrosis of T2DM mice was abolished. Conclusion: The upregulation of Sirt1 expression by exercise can inhibit the transforming growth factor ß1/Smad3 pathway, thereby inhibiting the expression and deposition of COL1 and COL3 in renal interstitium, thereby improving renal interstitial fibrosis in T2DM.
RESUMEN
In this paper, a freestanding flexible nanofibrillated cellulose (NFC)/silver (Ag) composite film with high thermal conductivity (TC) was prepared using the NFC that was in situ coated with a small amount of Ag nanoparticles through mussel-inspired chemistry of dopamine. The results demonstrated that Ag nanoparticles were homogeneously coated on the surface of NFC nanofibers and their incorporation had little influence on the film-forming ability of NFC. The NFC decorated with Ag nanoparticles could easily form thermally conductive pathways in the composite films, and the resultant films containing only 2.0 vol % of Ag showed a high in-plane TC value of 6.0 W/(m·K), which was 4 times that of pure NFC film. Moreover, the composite films exhibited relatively high strength and flexibility. The highly thermally conductive NFC/Ag composite films possess potential applications as lateral heat spreaders in flexible electronic equipment.
RESUMEN
Melatonin has been reported to alleviate chilling symptoms in postharvest peach fruit during cold storage, however, the mechanism involved is largely unknown. To better understand its role in chilling tolerance, here we investigated the effects of melatonin on oxidative damage in peach fruit subjected to chilling after harvest. Chilling injury of peaches was dramatically reduced by melatonin treatment. Melatonin induced hydrogen peroxide (H2O2) content at the early stage of storage but inhibited its accumulation thereafter. Meanwhile, melatonin also up-regulated the expression of genes involved in antioxidant responses in peaches. In addition, compared to the control fruit, peaches treated with melatonin displayed higher transcript abundance of ascorbic acid (AsA) biosynthetic genes and consequently increased the AsA content. Our results suggested that in response to melatonin during chilling, the high H2O2 level in the treated peaches at the initial time of storage, may work as a signaling molecule to induce protective mechanisms via up-regulating the expression of antioxidative genes and increasing AsA content. On the other hand, after the transient increase in the treated peaches, H2O2 was efficiently removed because of the activated antioxidant systems, which was associated with the higher chilling tolerance induced by melatonin.