Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401400, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736421

RESUMEN

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.

2.
J Med Chem ; 67(9): 7373-7384, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38646851

RESUMEN

Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.


Asunto(s)
Antineoplásicos , Apoptosis , Diseño de Fármacos , Glucosa , Quinazolinas , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Glucosa/metabolismo , Apoptosis/efectos de los fármacos , Ratones , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ratones Desnudos , Ratones Endogámicos BALB C
3.
Adv Sci (Weinh) ; : e2401623, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639391

RESUMEN

Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. To overcome the inherent limitations of conventional PROTACs, an innovative drugtamer-PROTAC conjugation approach is developed to enhance tumor targeting and antitumor potency. Specifically, a smart prodrug is designed by conjugating "drugtamer" to a nicotinamide phosphoribosyltransferase (NAMPT) PROTAC using a tumor microenvironment responsible linker. The "drugtamer" consists of fluorouridine nucleotide and DNA-like oligomer. Compared to NAMPT PROTAC and the combination of PROTAC + fluorouracil, the designed prodrug AS-2F-NP demonstrates superior tumor targeting, efficient cellular uptake, improved in vivo potency and reduced side effects. This study provides a promising strategy for the precise delivery of PROTAC and synergistic antitumor agents.

4.
Sci Bull (Beijing) ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38614856

RESUMEN

Undruggable targets typically refer to a class of therapeutic targets that are difficult to target through conventional methods or have not yet been targeted, but are of great clinical significance. According to statistics, over 80% of disease-related pathogenic proteins cannot be targeted by current conventional treatment methods. In recent years, with the advancement of basic research and new technologies, the development of various new technologies and mechanisms has brought new perspectives to overcome challenging drug targets. Among them, targeted protein degradation technology is a breakthrough drug development strategy for challenging drug targets. This technology can specifically identify target proteins and directly degrade pathogenic target proteins by utilizing the inherent protein degradation pathways within cells. This new form of drug development includes various types such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting Chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera (AUTAC), autophagy-targeting chimera (AUTOTAC), degrader-antibody conjugate (DAC). This article systematically summarizes the application of targeted protein degradation technology in the development of degraders for challenging drug targets. Finally, the article looks forward to the future development direction and application prospects of targeted protein degradation technology.

5.
J Hepatol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670321

RESUMEN

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of nonalcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. This study investigates the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in NASH pathogenesis. METHODS: Hepatic EFHD2 expression was characterized in NASH patients and two diet-induced NASH mouse models. Single-cell RNA-sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma (HCC) were assessed. Molecular mechanisms underlying EFHD2 function were investigated, along with its potential as a therapeutic target by chemical and genetic means. RESULTS: EFHD2 expression was significantly elevated in liver tissue macrophages/monocytes in both NASH patients and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related HCC. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of interferon-γ receptor-2 (IFNγR2) onto the plasma membrane. This interaction mediates IFNγ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a developed stapled α-helical peptide targeting EFHD2 demonstrated its efficacy in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all NAFLD patients progress to NASH. A key challenge is identifying the factors triggering inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of IFNγ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings suggest EFHD2 as a promising target for drug development aimed at NASH treatment.

6.
J Med Chem ; 67(6): 4726-4738, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38489247

RESUMEN

Cryptococcus neoformans (C. neoformans) and Candida albicans (C. albicans) are classified as the critical priority groups among the pathogenic fungi, highlighting the urgent need for developing more effective antifungal therapies. On the basis of antifungal natural product sampangine, herein, a series of tricyclic oxime and oxime ether derivatives were designed. Among them, compound WZ-2 showed excellent inhibitory activity against C. neoformans (MIC80 = 0.016 µg/mL) and synergized with fluconazole to treat resistant C. albicans (FICI = 0.078). Interestingly, compound WZ-2 effectively inhibited virulence factors (e.g., capsule, biofilm, and yeast-to-hypha morphological transition), suggesting the potential to overcome drug resistance. In a mouse model of cryptococcal meningitis, compound WZ-2 (5 mg/kg) effectively reduced the brain C. neoformans H99 burden. Furthermore, compound WZ-2 alone and its combination with fluconazole also significantly reduced the kidney burden of the drug-resistant strain (0304103) and sensitive strain (SC5314) of C. albicans.


Asunto(s)
Alcaloides , Candidiasis , Criptococosis , Cryptococcus neoformans , Compuestos Heterocíclicos de 4 o más Anillos , Naftiridinas , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Fluconazol/farmacología , Fluconazol/uso terapéutico , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Candidiasis/tratamiento farmacológico , Candida albicans , Pruebas de Sensibilidad Microbiana
7.
J Med Chem ; 67(5): 4120-4130, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38367219

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) plays a crucial role in the cellular energy metabolism pathway. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme involved in the biosynthesis of NAD+. Herein, a series of new NAMPT activators were designed to increase the NAD+ levels and improve aging-associated dysfunctions. In particular, compound C8 effectively activated NAMPT and promoted the biosynthesis of NAD+. Furthermore, we demonstrated that NAMPT activator C8 possessed excellent antiaging effects both in vitro and in vivo. Activator C8 showed potent activity in delaying aging in senescent HL-7702 cells and extended the lifespan of Caenorhabditis elegans. In a naturally aging mouse model, compound C8 effectively alleviated age-related dysfunctions and markers. Therefore, NAMPT activator C8 represented a promising lead compound for the treatment of age-related diseases.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Ratones , Animales , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Citocinas/metabolismo , Envejecimiento
8.
Angew Chem Int Ed Engl ; 63(12): e202315997, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282119

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Animales , Mamíferos , Quimera Dirigida a la Proteólisis
9.
ACS Med Chem Lett ; 15(1): 29-35, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229750

RESUMEN

The autophagy-tethering compound (ATTEC) technology has emerged as a promising strategy for targeted protein degradation (TPD). Here, we report the discovery of the first generation of PDEδ autophagic degraders using an ATTEC approach. The most promising compound 12c exhibited potent PDEδ binding affinity and efficiently induced PDEδ degradation in a concentration-dependent manner. Mechanistic studies confirmed that compound 12c reduced the PDEδ protein level through lysosome-mediated autophagy without affecting the PDEδ mRNA expression. Importantly, compound 12c was much more effective in suppressing the growth in KRAS mutant pancreatic cancer cells than the corresponding PDEδ inhibitor. Taken together, this study expands the application scope of the ATTEC approach and highlights the effectiveness of the PDEδ autophagic degradation strategy in antitumor drug discovery.

10.
Small ; 20(8): e2306378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817359

RESUMEN

Proteolysis-targeting chimeras (PROTACs) can provide promising opportunities for cancer treatment, while precise regulation of their activities remains challenging to achieve effective and safe therapeutic outcomes. A semiconducting polymer nanoPROTAC (SPNFeP ) is reported that can achieve ultrasound (US) and tumor microenvironment dual-programmable PROTAC activity for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. SPNFeP is formed through a nano-precipitation of a sonodynamic semiconducting polymer, a ferroptosis inducer, and a newly synthesized PROTAC molecule. The semiconducting polymers work as sonosensitizers to produce singlet oxygen (1 O2 ) via sonodynamic effect under US irradiation, and ferroptosis inducers react with intratumoral hydrogen peroxide (H2 O2 ) to generate hydroxyl radical (·OH). Such a dual-programmable reactive oxygen species (ROS) generation not only triggers ferroptosis and immunogenic cell death (ICD), but also induces on-demand activatable delivery of PROTAC molecules into tumor sites. The effectively activated nanoPROTACs degrade nicotinamide phosphoribosyl transferase (NAMPT) to suppress tumor infiltration of myeloid-derived suppressive cells (MDSCs), thus promoting antitumor immunity. In such a way, SPNFeP mediates sonodynamic-ferroptosis activatable immunotherapy for entirely inhibiting tumor growths in both subcutaneous and 2-cm tissue-covered deep tumor mouse models. This study presents a dual-programmable activatable strategy based on PROTACs for effective and precise cancer combinational therapy.


Asunto(s)
Ferroptosis , Neoplasias , Animales , Ratones , Inmunoterapia , Terapia Combinada , Neoplasias/terapia , Polímeros , Línea Celular Tumoral , Microambiente Tumoral
11.
Eur J Med Chem ; 264: 116047, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38118394

RESUMEN

Hepatocellular carcinoma (HCC) is a highly aggressive and lethal malignancy with poor prognosis, necessitating the urgent development of effective treatments. Targeted photodynamic therapy (PDT) offers a promising way to selectively eradicate tumor cells without affecting normal cells. Inspired by promising features of peptide-drug conjugates (PDCs) in targeted cancer therapy, herein a novel glypican-3 (GPC3)-targeting PDC-PDT strategy was developed for the precise PDT treatment of HCC. The GPC3-targeting photosensitizer conjugates were developed by attaching GPC3-targeting peptides to chlorin e6. Conjugate 8b demonstrated the ability to penetrate HCC cells via GPC3-mediated entry process, exhibiting remarkable tumor-targeting capacity, superior antitumor efficacy, and minimal toxicity towards normal cells. Notably, conjugate 8b achieved complete tumor elimination upon light illumination in a HepG2 xenograft model without harm to normal tissues. Overall, this innovative GPC3-targeting conjugation strategy demonstrates considerable promise for clinical applications for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fotoquimioterapia , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Glipicanos/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico
12.
J Med Chem ; 66(24): 16694-16703, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38060985

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is essentially involved in many biological processes of cancer cells, yet chemical intervention of NAD biosynthesis failed to obtain an optimal therapeutic benefit. We herein developed a new strategy to induce catastrophic NAD depletion by concurrently impairing NAD synthesis and promoting NAD consumption. We designed a series of new compounds that conjugate an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, with a DNA-alkylating agent. Among them, compound 11b exhibited potent anticancer efficacy in cancer cell lines and mouse tumor models with intrinsic resistance to the parent compound FK866 or chlorambucil. Compound 11b caused catastrophic NAD depletion via a synergistic effect between the NAD salvage pathway blockade and DNA damage-triggered NAD consumption. Our findings suggest a new intervention strategy for causing catastrophic NAD depletion in cancer cells and provide basis for the development of new inhibitors targeting NAD metabolism.


Asunto(s)
NAD , Neoplasias , Animales , Ratones , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
13.
J Med Chem ; 66(24): 16828-16842, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38055861

RESUMEN

Proteolysis-targeting chimeras (PROTACs) have recently emerged as a promising technology for drug development. However, poor water solubility, limited tissue selectivity, and inadequate tumor penetration pose significant challenges for PROTAC-based therapies in cancer treatment. Herein, we developed an iRGD-PROTAC conjugation strategy utilizing tumor-penetrating cyclic peptide iRGD (CRGDK/RGPD/EC) to deliver PROTACs deep into breast cancer tissues. As a conceptual validation study, iRGD peptides were conjugated with a bromodomain-containing protein 4 (BRD4) PROTAC through a GSH-responsive linker. The resulting iRGD-PROTAC conjugate iPR showed enhanced water solubility, tumor-targeting capability, and penetration within tumor tissues, resulting in increased antibreast cancer efficacy in animal models and patient-derived organoids. This study demonstrates the advantages of combining iRGD and PROTACs in improving drug delivery and highlights the importance of tissue selectivity and penetration ability in PROTAC-based therapeutics.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Proteolisis , Quimera Dirigida a la Proteólisis , Proteínas Nucleares , Línea Celular Tumoral , Factores de Transcripción , Agua , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
14.
J Adv Res ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37913903

RESUMEN

INTRODUCTION: Natural products (NPs) play a crucial role in the development of therapeutic drugs. However, it is still highly challenging to identify the targets of NPs. Besides, NPs usually exert their pharmacological activities via acting on multiple targets or pathways, which also poses great difficulties for the target identification of NPs. OBJECTIVES: Inspired by our continuous efforts in designing drug-like protein degraders, this study introduced a successful example for the target identification and drug discovery of natural products evodiamine by employing PROTAC technology. METHODS: Taking advantages of proteolysis targeting chimera (PROTAC), herein an integrated strategy combining PROTAC derivatization, quantitative proteomic analysis and binding affinity validation was developed for target identification and drug discovery of antitumor NP evodiamine. RESULTS: In this study, both highly potent PROTACs and negative controls were designed for quantitative proteomic analysis. Furthermore, REXO4 was confirmed as a direct target of 3-fluoro-10-hydroxylevodiamine, which induced cell death through ROS. In addition, the PROTAC 13c effectively degraded REXO4 both in vitro and in vivo, leading to potent antitumor activities and reduced toxic side effects. CONCLUSION: In summary, we developed an integrated strategy for the target identification and drug discovery of NPs, which was successfully applied to the PROTAC derivatization and target characterization of evodiamine. This proof-of-concept study highlighted the superiority of PROTAC technology in target identification of NPs and accelerated the process of NPs-based drug discovery, exhibiting broad application in NP-based drug development.

15.
J Med Chem ; 66(23): 15699-15714, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37983010

RESUMEN

Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 µg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Fusobacterium nucleatum/fisiología , Neoplasias Colorrectales/patología , Triptofanasa , Reposicionamiento de Medicamentos , Neoplasias del Colon/tratamiento farmacológico
16.
J Med Chem ; 66(20): 14221-14240, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37820326

RESUMEN

Invasive fungal infections (IFIs) such as cryptococcal meningitis (CM) remain a serious health issue worldwide due to drug resistance closely related to biofilm formation. Unfortunately, available antifungal drugs with ideal safety and promising potency are still lacking; thus, the research of new candidate and therapeutic approach is urgently needed. As an important gas messenger molecule, nitric oxide (NO) shows vital inhibition on various microorganism biofilms. Hence, three series of novel NO-donating azole derivatives were designed and synthesized, and the in vitro antifungal activity as well as the mechanism of action was investigated. Among them, 3a and 3e displayed excellent antifungal activity against Cryptococcus neoformans and biofilm depending on the release of NO. Moreover, a more stable analogue 3h of 3a demonstrated markedly anti-CM effects via intranasal dropping, avoiding the first-pass effects and possessing a better brain permeability bypass blood-brain barrier. These results present a promising antifungal candidate and intranasal dropping approach for the treatment of CM, warranting further studies.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Azoles/farmacología , Criptococosis/tratamiento farmacológico , Meningitis Criptocócica/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
17.
Eur J Med Chem ; 261: 115787, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37690263

RESUMEN

Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.


Asunto(s)
Fotoquimioterapia , Porfirinas , Animales , Ratones , Humanos , Fármacos Fotosensibilizantes , Ratones Desnudos , Línea Celular Tumoral , Fotoquimioterapia/métodos , Porfirinas/farmacología
18.
Cancer Res ; 83(22): 3710-3725, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602831

RESUMEN

Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE: F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.


Asunto(s)
Colitis , Neoplasias , Humanos , Ratones , Animales , Faecalibacterium prausnitzii , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares , Antígeno CTLA-4 , Colitis/inducido químicamente
19.
J Med Chem ; 66(17): 11893-11904, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37584282

RESUMEN

Candida glabrata has emerged as an important opportunistic pathogen of invasive candidiasis due to increasing drug resistance. Targeting Pdr1-KIX interactions with small molecules represents a potential strategy for treating drug-resistant candidiasis. However, effective Pdr1-KIX inhibitors are rather limited, hindering the validation of target druggability. Here, new Pdr1-KIX inhibitors were designed and assayed. Particularly, compound B8 possessed a new chemical scaffold and exhibited potent KIX binding affinity, leading to enhanced synergistic efficacy with fluconazole to treat resistant C. glabrata infection (FICI = 0.28). Compound B8 acted by inhibiting the efflux pump and down-regulating resistance-associated genes through blocking the Pdr1-KIX interaction. Compound B8 exhibited excellent in vitro and in vivo antifungal potency in combination with fluconazole against azole-resistant C. glabrata. It also had direct antifungal effect to treat C. glabrata infection, suggesting new mechanisms of action independent of Pdr1-KIX inhibition. Therefore, compound B8 represents a promising lead compound for antifungal drug development.


Asunto(s)
Candidiasis , Pirazolonas , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/metabolismo , Azoles/farmacología , Azoles/uso terapéutico , Azoles/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Farmacorresistencia Fúngica , Fluconazol/farmacología , Fluconazol/uso terapéutico , Proteínas Fúngicas/metabolismo , Pirazolonas/farmacología , Factores de Transcripción/metabolismo , Tioamidas
20.
Acta Pharm Sin B ; 13(7): 3080-3092, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37521860

RESUMEN

Invasive fungal infections (IFIs) have been associated with high mortality, highlighting the urgent need for developing novel antifungal strategies. Herein the first light-responsive antifungal agents were designed by optical control of fungal ergosterol biosynthesis pathway with photocaged triazole lanosterol 14α-demethylase (CYP51) inhibitors. The photocaged triazoles completely shielded the CYP51 inhibition. The content of ergosterol in fungi before photoactivation and after photoactivation was 4.4% and 83.7%, respectively. Importantly, the shielded antifungal activity (MIC80 ≥ 64 µg/mL) could be efficiently recovered (MIC80 = 0.5-8 µg/mL) by light irradiation. The new chemical tools enable optical control of fungal growth arrest, morphological conversion and biofilm formation. The ability for high-precision antifungal treatment was validated by in vivo models. The light-activated compound A1 was comparable to fluconazole in prolonging survival in Galleria mellonella larvae with a median survival of 14 days and reducing fungal burden in the mouse skin infection model. Overall, this study paves the way for precise regulation of antifungal therapy with improved efficacy and safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA