Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3320-3329, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041095

RESUMEN

This study investigates the specific mechanisms of Huaier-induced mitochondrial apoptosis in colorectal cancer. HCT116 and SW480 cells were subjected to Huaier treatment. Cell proliferation and migration capabilities were examined through CCK-8 and scratch experiments, respectively. Apoptotic cells were clarified with Annexin-PE staining. DCFH-DA staining, malondialdehyde(MDA), and glutathione(GSH) were used to evaluate the oxidative stress damage level of cells. MitoSOX and JC-1 probes were used to selectively target mitochondria reactive oxygen species(mtROS) and mitochondria membrane potential(MMP) for the evaluation of mitochondria damage. Western blot(WB) experiment was performed to determine apoptosis proteins and PINK1/Parkin pathway. Experiments reveal that in different concentrations of Huaier treatment, the proliferation and migration capabilities of HCT116 and SW480 cells were both restrained. Additionally, mitochondrial apoptosis was activated. Compared with the control group, excessive ROS in colorectal cancer cells was generated in the Huaier group, while MDA increased, and GSH decreased, indicating oxidative stress damage. mtROS increased, and MMP decreased in colorectal cancer cells treated with Huaier, indicating mitochondrial damage. WB result revealed that Huaier suppressed the PINK1/Parkin pathway, hindered the clearance of impaired mitochondria, and subsequently facilitated apoptosis. In conclusion, Huaier impairs colorectal cancer cells through oxidative stress and mitochondria damage. Furthermore, it suppressed the PINK1/Parkin pathway, promoting mitochondria apoptosis in colorectal cancer cells.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/fisiopatología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
2.
Plants (Basel) ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38498457

RESUMEN

Understanding the molecular mechanisms that regulate flower growth, development, and opening is of paramount importance, yet these processes remain less explored at the genetic level. Flower development in Hydrangea paniculata 'Vanilla Strawberry' is finely tuned through hormonal signals, yet the genetic underpinnings are not well defined. This study addresses the gap by examining the influence of gibberellic acid (GA3), salicylic acid (SA), and ethylene (ETH) on the flowering traits and underlying molecular responses. Treatment with 100 mg/L SA significantly improved chlorophyll content and bolstered the accumulation of soluble sugars and proteins, advancing the flowering onset by 6 days and lengthening the flowering period by 11 days. Concurrently, this treatment enhanced inflorescence dimensions, increasing length, width, and petal area by 22.76%, 26.74%, and 27.45%, respectively. Contrastingly, 100 mg/L GA3 expanded inflorescence size but postponed flowering initiation and decreased inflorescence count. Higher concentrations of SA and GA3, as well as any concentration of ETH, resulted in delayed flowering and inferior inflorescence attributes. A physiological analysis over 50 days revealed that these regulators variably affected sugar and protein levels and modified antioxidant enzyme activities. An RNA-seq analysis during floral development highlighted significant transcriptomic reprogramming, with SA treatment downregulating Myb transcription factors, implicating them in the modulation of flowering timing and stress adaptation. These findings illuminate the complex interplay between hormonal treatments, gene expression, and flowering phenotypes in Hydrangea paniculata, offering valuable perspectives for ornamental horticulture optimization.

3.
Genes (Basel) ; 15(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540329

RESUMEN

Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.


Asunto(s)
Kadsura , Lignanos , Humanos , Transcriptoma/genética , Filogenia , Perfilación de la Expresión Génica , Sistema Enzimático del Citocromo P-450/genética , Lignanos/farmacología
4.
Mol Biol Rep ; 51(1): 328, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393428

RESUMEN

BACKGROUND: WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS: The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION: These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.


Asunto(s)
Antocianinas , Hydrangea , Antocianinas/genética , Hydrangea/química , Hydrangea/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Pigmentación/genética , Flores/metabolismo , Glucósidos/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Biochem Biophys Rep ; 37: 101641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288283

RESUMEN

Cadmium (Cd) contamination presents a significant challenge in global agriculture. This study explores the efficacy of chemical induction, specifically using sodium chloride (NaCl), to limit Cd uptake in tobacco (Nicotiana tabacum) and assesses its impact on essential divalent metal ions (DMIs). We conducted a comprehensive analysis encompassing ion absorption, root histology, and biochemistry to understand the influence of this method. Our results revealed that NaCl induction led to a notable 30 % decrease in Cd absorption, while maintaining minimal impact on zinc (Zn) uptake. Intriguingly, the absence of essential DMIs, such as calcium (Ca), magnesium (Mg), and Zn, was found to diminish the plant's capacity to absorb Cd. Furthermore, moderate NaCl induction resulted in an increased diameter of the root stele and enhanced lignin content, indicating a restriction of Cd absorption through the apoplastic pathway. Conversely, a compensatory absorption mechanism via the symplastic pathway appeared to be activated in the absence of essential elements. These findings highlight the potential of chemical induction as a strategy to mitigate agricultural Cd risks, offering insights into the complex interplay between plant ion transport pathways and metal uptake regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...