RESUMEN
BACKGROUND: Currently there are limited methods to link disease severity and risk of disease progression in Chronic Kidney Disease (CKD). To better understand this potential relationship, we interrogated the renal transcriptomic profile of individuals with CKD with measures of CKD severity and identified FERM-domain containing protein 3 (FRMD3) as a candidate gene for follow-up study. METHODS: RNA-seq was used to profile the transcriptome of CKD biopsies from the North Dublin Renal BioBank the results of which were correlated with clinical parameters. The potential function of FRMD3 was explored by interrogating the FRMD3 interactome and assessing the impact of lentiviral mediated FRMD3 knock down on human renal proximal tubule epithelial cells by assessing cell viability, metabolic activity, and structural markers. RESULTS: We identified a subset of 93 genes which are significantly correlated with estimated glomerular filtration rate and percentage tubulointerstitial fibrosis at time of biopsy and with CKD progression 5 years post-biopsy. These results were validated against transcriptomic data from an external cohort of 432 nephrectomy samples. One of the top-ranking genes from this subset, FRMD3, has previously been associated with the risk of developing diabetic kidney disease. Interrogating the interactome of FRMD3 in tubule epithelial cells revealed interactions with cytoskeletal components of cell-cell junctions. Knockdown of FRMD3 expression in tubule epithelial cells resulted in increased pro-apoptotic activity within the cells as well as dysregulation of E-Cadherin. CONCLUSIONS: We have identified a panel of kidney-specific transcripts correlated with severity and progression of kidney disease, and from this have identified a possible role for FRMD3 in tubule cell structure and health.
RESUMEN
This study reported an effective method for the degradation of Chieh-qua (Benincasa hispida var. Chieh-qua How) polysaccharides (BHCP) by a hydrogen peroxide-ascorbic acid oxidation (H2O2-VC) system. The degradation conditions were optimized using a Box-Behnken response surface design as concentration of H2O2-VC 19.5 mM, degradation temperature 46.4 ºC and degradation time 1.0 h. The average molecular weight was decreased and total sugar content was raised of the degraded polysaccharide (DBHCP). Two refined degraded polysaccharides (DBHCP-1, DBHCP-2) were purified and prepared, and their structures were analyzed by chemical and spectral analysis. The in vitro experiments showed that degraded polysaccharides (DBHCP and DBHCP-1) have better antioxidant and anti-tyrosinase activity than natural polysaccharide BHCP. These findings support the potential application of Chieh-qua polysaccharides in the food and medical industries.
RESUMEN
Despite its significant potential in various disease treatments and diagnostics, microbiotherapy is consistently plagued by multiple limitations ranging from manufacturing challenges to in vivo functionality. Inspired by the strategy involving nonproliferating yet metabolically active microorganisms, we report an intracellular gelation approach that can generate a synthetic polymer network within bacterial cells to solve these challenges. Specifically, poly(ethylene glycol dimethacrylate) (PEGDA, 700 Da) monomers are introduced into the bacterial cytosol through a single cycle of freeze-thawing followed by the initiation of intracellular free radical polymerization by UV light to create a macromolecular PEGDA gel within the bacterial cytosol. The molecular crowding resulting from intracytoplasmic gelation prohibits bacterial division and confers robust resistance to simulated gastrointestinal fluids and bile acids while retaining the ability to secrete functional proteins. Biocompatibility assessments demonstrate that the nondividing gelatinized bacteria are effective in alleviating systemic inflammation triggered by intravenous Escherichia coli injection. Furthermore, the therapeutic efficacy of gelatinized Lactobacillus rhamnosus in colitis mice provides additional support for this approach. Collectively, intracellular gelation indicates a universal strategy to manufacture next-generation live biotherapeutics for advanced microbiotherapy.
Asunto(s)
Escherichia coli , Polietilenglicoles , Animales , Ratones , Escherichia coli/efectos de los fármacos , Polietilenglicoles/química , Geles/química , Modelos Animales de Enfermedad , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Metacrilatos/químicaRESUMEN
Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.
Asunto(s)
Fertilizantes , Hidrogeles , Suelo , Agua , Fertilizantes/análisis , Hidrogeles/química , Agua/química , Suelo/química , Agricultura/métodosRESUMEN
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.
Asunto(s)
Berberina , Cardiomiopatías Diabéticas , Inflamación , Miocitos Cardíacos , Receptor para Productos Finales de Glicación Avanzada , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Masculino , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Berberina/análogos & derivados , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Autophagy regulates the formation of primary cilia, which in turn affects autophagy. The relationship between autophagy and cilia is known to be bidirectional although the specific mechanisms involved have yet to be elucidated. In this study, we found for the first time that ATG8 protein localizes in the basal body of the dorsal kineties and the base of the ventral cirri in Euplotes amieti. ATG8 protein maintains the structural integrity of cilia and plays a role in the construction of the cortical ciliature and microtubule cytoskeleton associated with cilia. ATG8 gene interference leads to the degradation of IFT88, the transport protein in cilia, thus inhibiting the generation of cilia, and affecting the swing of cilia. This influences the swimming speed and cilia pattern, leading to death in Euplotes amieti.
Asunto(s)
Cilios , Euplotes , Microtúbulos , Cilios/metabolismo , Microtúbulos/metabolismo , Euplotes/metabolismo , Autofagia/fisiología , Proteínas Protozoarias/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genéticaRESUMEN
BACKGROUND: Bile duct leaks (BDLs) are serious complications that occurs after hepatobiliary surgery and trauma, leading to rapid clinical deterioration. Endoscopic retrograde cholangiopancreatography (ERCP) is the first-line treatment for BDLs, but it is not clear which patients will respond to this therapy and which patients will require additional surgical intervention. The aim of our study was to explore the predictors of successful ERCP for BDLs. METHODS: A retrospective analysis was conducted using data from six centers' databases. All consecutive patients who were clinically confirmed as BDLs were included in the study. Collected data were demographics, disease severity, and ERCP procedure characteristics. Univariate and multivariate analysis were used to select independent predictive factors that affect the outcome of ERCP for BDLs, and a nomogram was established. Calibration and ROC curves were used to evaluate the models. RESULTS: Four hundred and forty-eight consecutive patients were clinically confirmed as BDLs and 347 were excluded. In the 101 patients included patients, clinical success was achieved in 78 patients (77.2%). In logistic multivariable regression, two independent factors were negatively associated with the success of ERCP: SIRS (OR, 0.183; 95% CI 0.039-0.864; P = 0.032) and high-grade leak (OR 0.073; 95% CI 0.010-0.539; P = 0.010). Two independent factors were positively associated with the success of ERCP: leak-bridging drainage (OR 4.792; 95% CI 1.08-21.21; P = 0.039) and cystic duct leak (OR 6.193; 95% CI 1.03-37.17; P = 0.046). The prediction model with these four factors was evaluated using a receiver-operating characteristic (ROC) curve, which demonstrated an area under the curve of 0.9351. The calibration curve showed that the model had good predictive accuracy. CONCLUSION: Leak-bridging drainage and cystic duct leak are positive predictors for the success of ERCP, while SIRS and high-grade leak are negative predictors. This prediction model with nomogram has good predictive ability and practical clinical value, and may be helpful in clinical decision-making and prognostication.
Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Nomogramas , Humanos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Adulto , Enfermedades de los Conductos Biliares/cirugía , Fuga Anastomótica/etiologíaRESUMEN
Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.
Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Metales , Aguas Residuales , Hidróxidos , AdsorciónRESUMEN
The application of oncolytic peptides has become a powerful approach to induce complete and long-lasting remission in multiple types of carcinomas, as affirmed by the appearance of tumor-associated antigens and adenosine triphosphate (ATP) in large quantities, which jumpstarts the cancer-immunity cycle. However, the ATP breakdown product adenosine is a significant contributor to forming the immunosuppressive tumor microenvironment, which substantially weakens peptide-driven oncolytic immunotherapy. In this study, a lipid-coated micelle (CA@TLM) loaded with a stapled oncolytic peptide (PalAno) and an adenosine 2A receptor (A2AR) inhibitor (CPI-444) is devised to enact tumor-targeted oncolytic immunotherapy and to overcome adenosine-mediated immune suppression simultaneously. The CA@TLM micelle accumulates in tumors with high efficiency, and the acidic tumor microenvironment prompts the rapid release of PalAno and CPI-444. Subsequently, PalAno induces swift membrane lysis of tumor cells and the release of antigenic materials. Meanwhile, CPI-444 blocks the activation of the immunosuppressive adenosine-A2AR signaling pathway. This combined approach exhibits pronounced synergy at stalling tumor growth and metastasis in animal models for triple-negative breast cancer and melanoma, providing a novel strategy for enhanced oncolytic immunotherapy.
Asunto(s)
Adenosina , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Adenosina/química , Ratones , Humanos , Línea Celular Tumoral , Inmunoterapia/métodos , Receptor de Adenosina A2A/metabolismo , Femenino , Péptidos/química , MicelasRESUMEN
Epigenetic changes may fill a critical gap in our understanding of kidney disease development, as they not only reflect metabolic changes but are also preserved and transmitted during cell division. We conducted a genome-wide cytosine methylation analysis of 399 human kidney samples, along with single-nuclear open chromatin analysis on over 60,000 cells from 14 subjects, including controls, and diabetes and hypertension attributed chronic kidney disease (CKD) patients. We identified and validated differentially methylated positions associated with disease states, and discovered that nearly 30% of these alterations were influenced by underlying genetic variations, including variants known to be associated with kidney disease in genome-wide association studies. We also identified regions showing both methylation and open chromatin changes. These changes in methylation and open chromatin significantly associated gene expression changes, most notably those playing role in metabolism and expressed in proximal tubules. Our study further demonstrated that methylation risk scores (MRS) can improve disease state annotation and prediction of kidney disease development. Collectively, our results suggest a causal relationship between epigenetic changes and kidney disease pathogenesis, thereby providing potential pathways for the development of novel risk stratification methods.
Asunto(s)
Metilación de ADN , Insuficiencia Renal Crónica , Humanos , Metilación de ADN/genética , Cromatina/genética , Cromatina/metabolismo , Estudio de Asociación del Genoma Completo , Riñón/metabolismo , Epigénesis Genética , Insuficiencia Renal Crónica/patologíaRESUMEN
Membrane fouling induced by natural organic matter (NOM) has seriously affected the further extensive application of ultrafiltration (UF). Herein, a simple, green and robust vacuum ultraviolet (VUV) technology was adopted as pretreatment before UF and ultraviolet (UV) technology was used for comparison. The results showed that control effect of VUV pretreatment on membrane fouling was better than that of UV pretreatment, as evidenced by the increase of normalized flux from 0.27 to 0.38 and 0.73 after 30 min UV or VUV pretreatment, respectively. This is related to the fact that VUV pretreatment exhibited stronger NOM degradation ability than UV pretreatment owing to the formation of HOâ¢. The steady-state concentration of HO⢠was calculated as 3.04 × 10-13 M and the cumulative exposure of HO⢠reached 5.52 × 10-10 M s after 30 min of VUV irradiation. And the second-order rate constant between NOM and HO⢠was determined as 1.36 × 104 L mg-1 s-1. Furthermore, fluorescence EEM could be applied to predict membrane fouling induced by humic-enriched water. Standard blocking and cake filtration were major fouling mechanisms. Moreover, extension of UV pretreatment time increased the disinfection by-products (DBPs) formation, the DBPs concentration was enhanced from 322.36 to 1187.80 µg/L after 210 min pretreatment. However, VUV pretreatment for 150 min reduced DBPs content to 282.57 µg/L, and DBPs content continued to decrease with the extension of pretreatment time, revealing that VUV pretreatment achieved effective control of DBPs. The variation trend of cytotoxicity and health risk of DBPs was similar to that of DBPs concentration. In summary, VUV pretreatment exhibited excellent effect on membrane fouling alleviation, NOM degradation and DBPs control under a certain pretreatment time.
Asunto(s)
Desinfección , Purificación del Agua , Purificación del Agua/métodos , Ultrafiltración/métodos , Vacio , Rayos Ultravioleta , Membranas ArtificialesRESUMEN
To evaluate the possible thermal risks associated with the storage of octogen (HMX), non-isothermal differential scanning calorimetry (DSC) experiments were conducted in order to ascertain the kinetic model and parameters governing its thermal decomposition. DSC measurements indicate that HMX underwent a crystal transformation prior to thermal decomposition. A kinetic model for the autocatalytic thermal decomposition process was developed through the analysis of its primary exothermic peaks. Subsequently, numerical simulations were performed using the aforementioned kinetic model to assess the potential thermal explosion hazard of HMX under two distinct storage conditions. The comparison was made between the models of HMX autocatalytic decomposition temperature and thermal explosion critical temperature under two distinct storage conditions. The prediction of the influence of ambient temperature on the critical temperature of thermal explosion is conducted simultaneously. Finally, the thermal hazard parameters of HMX under different package quality are given.
RESUMEN
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias de la Próstata , Humanos , Masculino , Población Negra/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Factores de Riesgo , Población Blanca/genética , Pueblo Asiatico/genéticaRESUMEN
Advancements in intelligent robots and human-machine interaction necessitate a shift in artificial skins toward multimodal perception. Dual-responsive skins that can detect proximity and pressure information are significant to establishing continuous sensing of interaction processes and extending interactive application scenarios. To address the current limitations of inadequate dual-mode performance, such as limited proximal response change and low tactile sensitivity, this paper presents a bioinspired complementary gradient architecture-enabled (CGA) transduction design and a high-performance dual-responsive skin based on coplanar square-loop electrodes. Through systematic investigation into the transduction of various electrode configurations, comparative results reveal the remarkable potential of coplanar electrodes to deliver superior dual-mode performance without compromise. Simulations and experiments prove that the proposed CGA response mechanism can capture local interface deformation and overall compression signals, further enhancing response sensitivity. The final developed artificial skin is sensitive to external pressure and the approach of objects simultaneously, exhibiting a long detection distance (â¼40 mm), a high proximity response (>0.4), and outstanding touch sensitivity (0.131 kPa-1). Furthermore, we demonstrate proof-of-concept applications for the proposed sensing skin in a dual-mode teleoperation interface and adaptive grasping interactions.
Asunto(s)
Piel Artificial , Piel , Humanos , Tacto , Electrodos , PresiónRESUMEN
Prostate cancer risk is influenced by rare and common germline variants. We examined the aggregate association of rare germline pathogenic/likely pathogenic/deleterious (P/LP/D) variants in ATM, BRCA2, PALB2, and NBN with a polygenic risk score (PRS) on prostate cancer risk among 1,796 prostate cancer cases (222 metastatic) and 1,424 controls of African ancestry. Relative to P/LP/D non-carriers at average genetic risk (33%-66% of PRS), men with low (0%-33%) and high (66%-100%) PRS had Odds Ratios (ORs) for overall prostate cancer of 2.08 [95% confidence interval (CI) = 0.58-7.49] and 18.06 (95% CI = 4.24-76.84) among P/LP/D carriers and 0.57 (95% CI = 0.46-0.71) and 3.02 (95% CI = 2.53-3.60) among non-carriers, respectively. The OR for metastatic prostate cancer was 2.73 (95% CI = 0.24-30.54) and 28.99 (95% CI = 4.39-191.43) among P/LP/D carriers and 0.54 (95% CI = 0.31-0.95) and 3.22 (95% CI = 2.20-4.73) among non-carriers, for men with low and high PRS, respectively. Lifetime absolute risks of overall prostate cancer increased with PRS (low to high) from 9.8% to 51.5% in P/LP/D carriers and 5.5% to 23.9% in non-carriers. Lifetime absolute risks of metastatic prostate cancer increased with PRS from 1.9% to 18.1% in P/LP/D carriers and 0.3% to 2.2% in non-carriers These findings suggest that assessment of prostate cancer risk for rare variant carriers should include PRS status. SIGNIFICANCE: These findings highlight the importance of considering rare and common variants to comprehensively assess prostate cancer risk in men of African ancestry.
Asunto(s)
Puntuación de Riesgo Genético , Neoplasias de la Próstata , Masculino , Humanos , Predisposición Genética a la Enfermedad/genética , Factores de Riesgo , Neoplasias de la Próstata/genética , Mutación de Línea GerminalRESUMEN
This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.
Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Terapia Fototérmica , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Péptidos Catiónicos Antimicrobianos , Inmunoterapia/métodos , Línea Celular Tumoral , Fototerapia/métodos , Nanopartículas/químicaRESUMEN
AIM: To investigate time trends in myopia and high myopia prevalence over 6y among young university adults in China. METHODS: This is a 6-year series cross-sectional study from 2016 to 2021. Totally 4910 freshmen were enrolled and completed a questionnaire concerning age, gender, and disease history. Students with eye diseases were excluded after a detailed eye examination. The refractive status was measured by non-cycloplegic objective refraction and ocular parameters were measured by Lenstar 900. The examination followed the same protocol each year. Trends over time in myopia and high myopia prevalence, as well as ocular biometry parameters, were analyzed. RESULTS: From 2016 to 2021, the axial length (AL) and corneal radius (CR) increased significantly (P=0.002 for AL; P=0.04 for CR). However, the spherical equivalent (SE) and the ratio of axial length to the corneal radius (AL/CR) did not change significantly (P=0.59 for SE; P=0.24 for AL/CR). The frequency of AL ≥26.0 mm increased from 26.6% in 2016 to 29.3% in 2021 (P=0.05 for trend). The prevalence of myopia and high myopia did not change significantly in our study (P≥0.18). Compared to a similar cross-sectional study conducted 10 years ago, the prevalence of myopia decreased significantly (94.9% vs 91.8%, P<0.001). Whereas the prevalence of high myopia increased largely (18.12% vs 27.6%, P<0.001). CONCLUSION: The prevalence of high myopia increases in young university adults during 10y period. Myopia control should begin earlier in childhood. However, these interventions are still needed for high myopia even in young adulthood.
RESUMEN
This study aims to analysis the structures of polysaccharides isolated from Pteridium revolutum and their antioxidant and antiglycated activities. Three novel water-soluble heteropolysaccharides, named PRP0, PRP1, and PRP2, were isolated from P. revolutum. The average molecular weight was determined by high performance gel permeation chromatography analysis as 1.04 × 106, 8.39 × 105, and 7.37 × 105 Da, respectively. Their structures were characterized using physicochemical and spectroscopic methods. The antioxidant and antiglycated activities were assayed in vitro. PRP0, PRP1, and PRP2 consist of l-Ara, l-Rha, d-Man, d-Xyl, d-Fuc, d-Gal, and d-Glc in different proportions. PRP1 mainly has a backbone of (1 â 3,6)-linked d-Man and (1 â 3)-linked d-Gal on main chain. PRP2 is mainly composed of (1 â 2,4)-linked d-Man and (1 â 3)-linked d-Gal on main chain. All polysaccharides have strong scavenging power on 2,2-difenil-1-picril-hidrazil and hydroxyl radicals and significantly antiglycated activity in Bovine serum albumin-Glucose model, which showing that the polysaccharides have potential application value on the functional food.
RESUMEN
Importance: Germline gene panel testing is recommended for men with advanced prostate cancer (PCa) or a family history of cancer. While evidence is limited for some genes currently included in panel testing, gene panels are also likely to be incomplete and missing genes that influence PCa risk and aggressive disease. Objective: To identify genes associated with aggressive PCa. Design, Setting, and Participants: A 2-stage exome sequencing case-only genetic association study was conducted including men of European ancestry from 18 international studies. Data analysis was performed from January 2021 to March 2023. Participants were 9185 men with aggressive PCa (including 6033 who died of PCa and 2397 with confirmed metastasis) and 8361 men with nonaggressive PCa. Exposure: Sequencing data were evaluated exome-wide and in a focused investigation of 29 DNA repair pathway and cancer susceptibility genes, many of which are included on gene panels. Main Outcomes and Measures: The primary study outcomes were aggressive (category T4 or both T3 and Gleason score ≥8 tumors, metastatic PCa, or PCa death) vs nonaggressive PCa (category T1 or T2 and Gleason score ≤6 tumors without known recurrence), and metastatic vs nonaggressive PCa. Results: A total of 17â¯546 men of European ancestry were included in the analyses; mean (SD) age at diagnosis was 65.1 (9.2) years in patients with aggressive PCa and 63.7 (8.0) years in those with nonaggressive disease. The strongest evidence of association with aggressive or metastatic PCa was noted for rare deleterious variants in known PCa risk genes BRCA2 and ATM (P ≤ 1.9 × 10-6), followed by NBN (P = 1.7 × 10-4). This study found nominal evidence (P < .05) of association with rare deleterious variants in MSH2, XRCC2, and MRE11A. Five other genes had evidence of greater risk (OR≥2) but carrier frequency differences between aggressive and nonaggressive PCa were not statistically significant: TP53, RAD51D, BARD1, GEN1, and SLX4. Deleterious variants in these 11 candidate genes were carried by 2.3% of patients with nonaggressive, 5.6% with aggressive, and 7.0% with metastatic PCa. Conclusions and Relevance: The findings of this study provide further support for DNA repair and cancer susceptibility genes to better inform disease management in men with PCa and for extending testing to men with nonaggressive disease, as men carrying deleterious alleles in these genes are likely to develop more advanced disease.