Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124172

RESUMEN

Grain size is a primary determinant of grain weight, which is one of the three essential components of rice grain yield. Mining the genes that control grain size plays an important role in analyzing the regulation mechanism of grain size and improving grain appearance quality. In this study, two closely linked quantitative trait loci (QTL) controlling grain size, were dissected and fine-mapped in a 515.6-kb region on the long arm of chromosome 10 by using six near isogenic line populations. One of them, qGS10.2, which controlled 1000 grain weight (TGW) and grain width (GW), was delimited into a 68.1-kb region containing 14 annotated genes. The Teqing allele increased TGW and GW by 0.17 g and 0.011 mm with the R2 of 12.7% and 11.8%, respectively. The other one, qGL10.2, which controlled grain length (GL), was delimited into a 137.3-kb region containing 22 annotated genes. The IRBB52 allele increased GL by 0.018 mm with the R2 of 6.8%. Identification of these two QTL provides candidate regions for cloning of grain size genes.

2.
Plant Biotechnol J ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898780

RESUMEN

Ensuring rice yield and grain safety quality are vital for human health. In this study, we developed two-line hybrid rice (TLHR) with ultra-low grain cadmium (Cd) and arsenic (As) accumulation by pyramiding novel alleles of OsNramp5 and OsLsi2. We first generated low Cd accumulation restorer (R) lines by editing OsNramp5, OsLCD, and OsLCT in japonica and indica. After confirming that OsNramp5 was most efficient in reducing Cd, we edited this gene in C815S, a genic male sterile line (GMSL), and screened it for alleles with low Cd accumulation. Next, we generated R and GMSL lines with low As accumulation by editing OsLsi2 in a series of YK17 and C815S lines. When cultivated in soils that were heavily polluted with Cd and As, the edited R, GMSL, and TLHR plants showed significantly reduced heavy metal accumulation, while maintaining a relatively stable yield potential. This study provides an effective scheme for the safe production of grains in As- and/or Cd-polluted paddy fields.

3.
New Phytol ; 243(4): 1440-1454, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923565

RESUMEN

Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice. Deficiency of DTN1 results in the reduced photosynthetic rate and decreased contents of sucrose and other sugars in both leaves and axillary buds, and the reduced tiller number in dtn1 mutant could be partially rescued by exogenous sucrose treatment. Furthermore, we found that the expression of nitrogen-mediated tiller growth response 5 (NGR5) was remarkably decreased in shoot base of dtn1-2, which can be activated by sucrose treatment. Overexpression of NGR5 in the dtn1-2 could partially rescue the reduced tiller number, and the tiller number of dtn1-2 was insensitive to nitrogen supply. This work demonstrated that the sugar level regulated by photosynthesis and DTN1 could positively regulate NGR5 expression, which coordinates the cross-talk between carbon and nitrate to control tiller bud outgrowth in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitrógeno , Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Fotosíntesis/efectos de los fármacos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sacarosa/metabolismo , Sacarosa/farmacología , Azúcares/metabolismo , Mutación/genética , Genes de Plantas , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo
4.
Physiol Plant ; 176(3): e14369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828612

RESUMEN

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Asunto(s)
Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo , Calor , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Mutación , Respuesta al Choque Térmico/genética , Mutación con Pérdida de Función , Fenotipo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
5.
J Integr Plant Biol ; 66(7): 1427-1439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751025

RESUMEN

A mechanized direct seeding of rice with less labor and water usage, has been widely adopted. However, this approach requires varieties that exhibit uniform seedling emergence. Mesocotyl elongation (ME) offers the main drive of fast emergence of rice seedlings from soils; nevertheless, its genetic basis remains unknown. Here, we identify a major rice quantitative trait locus Mesocotyl Elongation1 (qME1), an allele of the Green Revolution gene Semi-Dwarf1 (SD1), encoding GA20-oxidase for gibberellin (GA) biosynthesis. ME1 expression is strongly induced by soil depth and ethylene. When rice grains are direct-seeded in soils, the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription, accelerating bioactive GA biosynthesis. The GAs further degrade the DELLA protein SLENDER RICE 1 (SLR1), alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13 (OsPIL13) to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence. The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process, and an elite ME1-R allele (D349H) is found in some modern Geng varieties (long mesocotyl lengths) in northern China, which can be used in the direct seeding and dwarf breeding of Geng varieties. Furthermore, the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties. Collectively, we reveal the molecular mechanism of rice ME, and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.


Asunto(s)
Etilenos , Regulación de la Expresión Génica de las Plantas , Giberelinas , Oryza , Proteínas de Plantas , Transducción de Señal , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Giberelinas/metabolismo , Etilenos/metabolismo , Transducción de Señal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Sitios de Carácter Cuantitativo/genética
6.
Plant Commun ; 5(7): 100893, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38581128

RESUMEN

Transitory starch is an important carbon source in leaves, and its biosynthesis and metabolism are closely related to grain quality and yield. The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice (Oryza sativa) quality and yield remain unclear. Here, we show that OsLESV and OsESV1, the rice orthologs of AtLESV and AtESV1, are associated with transitory starch biosynthesis in rice. The total starch and amylose contents in leaves and endosperms are significantly reduced, and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants. Furthermore, we found that OsLESV and OsESV1 bind to starch, and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain. Importantly, OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis, granule-bound starch synthase I (GBSSI), GBSSII, and pyruvate orthophosphote dikiase (PPDKB), to maintain their protein stability and activity. OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules. Overexpression of GBSSI, GBSSII, and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants. Thus, we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice. These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield, providing useful information for the genetic improvement of rice grain quality and yield.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Almidón Sintasa , Almidón , Oryza/genética , Oryza/metabolismo , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Amilosa/metabolismo , Amilosa/biosíntesis , Regulación de la Expresión Génica de las Plantas
7.
Nat Commun ; 15(1): 1134, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326370

RESUMEN

Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.


Asunto(s)
Oryza , Latencia en las Plantas , Latencia en las Plantas/genética , Mapeo Cromosómico , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Fenotipo , Semillas/genética
8.
Physiol Plant ; 176(2): e14226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410873

RESUMEN

Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Agricultura , Fenómenos Químicos , Metaloides/metabolismo , Metaloides/toxicidad , Metales Pesados/toxicidad , Plantas/metabolismo , Suelo , Contaminantes del Suelo/toxicidad
9.
Rice (N Y) ; 17(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228921

RESUMEN

As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.

10.
Plant Biotechnol J ; 22(6): 1582-1595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38245899

RESUMEN

Head rice yield (HRY) measures rice milling quality and determines final grain yield and commercial value. Here, we report that two major quantitative trait loci for milling quality in rice, qMq-1 and qMq-2, represent allelic variants of Waxylv/Waxyb (hereafter Wx) encoding Granule-Bound Starch Synthase I (GBSSI) and Alkali Spreading Value ALKc/ALKb encoding Soluble Starch Synthase IIa (SSIIa), respectively. Complementation and overexpression transgenic lines in indica and japonica backgrounds confirmed that Wx and ALK coordinately regulate HRY by affecting amylose content, the number of amylopectin branches, amyloplast size, and thus grain filling and hardness. The transcription factor OsDOF18 acts upstream of Wx and ALK by activating their transcription. Furthermore, rice accessions with Wxb and ALKb alleles showed improved HRY over those with Wxlv and ALKc. Our study not only reveals the novel molecular mechanism underlying the formation of HRY but also provides a strategy for breeding rice cultivars with improved HRY.


Asunto(s)
Alelos , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo
11.
Plants (Basel) ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068705

RESUMEN

High temperatures accelerate the accumulation of storage material in seeds, often leading to defects in grain filling. However, the mechanisms regulating grain filling at high temperatures remain unknown. Here, we want to explore the quality factors influenced by the environment and have identified a LATE EMBROYGENESIS ABUNDANT gene, OsLEA1b, a heat-stress-responsive gene in rice grain filling. OsLEA1b is highly expressed in the endosperm, and its coding protein localizes to the nucleus and cytoplasm. Knock-out mutants of OsLEA1b had abnormal compound starch granules in endosperm cells and chalky endosperm with significantly decreased grain weight and grain number per panicle. The oslea1b mutants exhibited a lower proportion of short starch chains with degrees of polymerization values from 6 to 13 and a higher proportion of chains with degrees from 14 to 48, as well as significantly lower contents of starch, protein, and lipid compared to the wild type. The difference was exacerbated under high temperature conditions. Moreover, OsLEA1b was induced by drought stress. The survival rate of oslea1b mutants decreased significantly under drought stress treatment, with significant increase in ROS levels. These results indicate that OsLEA1b regulates starch biosynthesis and influences rice grain quality, especially under high temperatures. This provides a valuable resource for genetic improvement in rice grain quality.

12.
Front Plant Sci ; 14: 1222288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554558

RESUMEN

3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis-acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.

13.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047061

RESUMEN

Dormancy is a complex agronomy phenotype controlled by multiple signaling and a key trait repressing pre-harvest sprouting (PHS). However, the signaling network of dormancy remains unclear. In this study, we used Zhonghua11 (ZH11) with a weak dormancy, and Introgression line (IL) with a strong dormancy to study the mechanism of hormones and reactive oxygen species (ROS) crosstalk regulating rice dormancy. The germination experiment showed that the germination rate of ZH11 was 76.86%, while that of IL was only 1.25%. Transcriptome analysis showed that there were 1658 differentially expressed genes (DEGs) between IL and ZH11, of which 577 were up-regulated and 1081 were down-regulated. Additionally, DEGs were mainly enriched in oxidoreductase activity, cell periphery, and plant hormone signal transduction pathways. Tandem mass tags (TMT) quantitative proteomics analysis showed 275 differentially expressed proteins (DEPs) between IL and ZH11, of which 176 proteins were up-regulated, 99 were down-regulated, and the DEPs were mainly enriched in the metabolic process and oxidation-reduction process. The comprehensive transcriptome and proteome analysis showed that their correlation was very low, and only 56 genes were co-expressed. Hormone content detection showed that IL had significantly lower abscisic acid (ABA) contents than the ZH11 while having significantly higher jasmonic acid (JA) contents than the ZH11. ROS content measurement showed that the hydrogen peroxide (H2O2) content of IL was significantly lower than the ZH11, while the production rate of superoxide anion (O2.-) was significantly higher than the ZH11. These results indicate that hormones and ROS crosstalk to regulate rice dormancy. In particular, this study has deepened our mechanism of ROS and JA crosstalk regulating rice dormancy and is conducive to our precise inhibition of PHS.


Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/genética , Oryza/metabolismo , Transcriptoma , Proteoma/metabolismo , Latencia en las Plantas/genética , Peróxido de Hidrógeno/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499684

RESUMEN

Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.


Asunto(s)
Oryza , Oryza/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
15.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432867

RESUMEN

Zinc (Zn) is an essential micronutrient for rice, but it is toxic at a high concentration, especially in acid soils. It is yet unknown which genes regulate Zn tolerance in rice. In the present study, a genome-wide association study (GWAS) was performed for Zn tolerance in rice at the seedling stage within a rice core collection, named Ting's core collection, which showed extensive phenotypic variations in Zn toxicity with high-density single-nucleotide polymorphisms (SNPs). A total of 7 and 19 quantitative trait loci (QTL) were detected using root elongation (RE) and relative root elongation (RRE) under high Zn toxicity, respectively. Among them, 24 QTL were novel, and qRRE15 was located in the same region where 3 QTL were reported previously. In addition, qRE4 and qRRE9 were identical. Furthermore, we found eight candidate genes that are involved in abiotic and biotic stress, immunity, cell expansion, and phosphate transport in the loci of qRRE8, qRRE9, and qRRE15. Moreover, four candidate genes, i.e., Os01g0200700, Os06g0621900, Os06g0493600, and Os06g0622700, were verified correlating to Zn tolerance in rice by quantitative real time-PCR (qRT-PCR). Taken together, these results provide significant insight into the genetic basis for Zn toxicity tolerance and tolerant germplasm for developing rice tolerance to Zn toxicity and improving rice production in Zn-contaminated soils.

16.
Front Psychol ; 13: 992071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337477

RESUMEN

Performance pressure is a unique stressor in the public sector. Prior studies revealed that it could be a challenge that stimulates functional behavior (i.e., vigor and dedication) or a threat that leads to dysfunctional consequences (i.e., exhaustion and depersonalization). But these articles failed to provide an integrated theoretical model to explain both phenomena simultaneously. We introduced the double-edged sword effect (also called the "too-much-of-good-thing" effect) of performance pressure to fill this theoretical gap. Furthermore, the mediation role of mission valence was examined to explore the buffet mechanism toward this nonlinear relationship. We collected 1,464 valid questionnaire data from snowball sampling to test the research model. Our results revealed that: (1) performance pressure had an inverted U-shaped relationship with dedication and mission valence; (2) performance pressure hurt vigor rather than the curvilinear relationship; (3) mission valence can mediate the inverted U-shaped relationship between performance pressure and dedication. These empirical findings give theoretical contributions and practical insights to public personnel management.

17.
Plant Commun ; 3(6): 100463, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36258666

RESUMEN

Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.


Asunto(s)
Endospermo , Oryza , Endospermo/genética , Endospermo/metabolismo , Oryza/genética , Oryza/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Grano Comestible/metabolismo
18.
Front Microbiol ; 13: 1004454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212817

RESUMEN

Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.

19.
Toxins (Basel) ; 14(8)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36006230

RESUMEN

Fusarium proliferatum is the primary cause of spikelet rot disease in rice (Oryza sativa L.) in China. The pathogen not only infects a wide range of cereals, causing severe yield losses but also contaminates grains by producing various mycotoxins that are hazardous to humans and animals. Here, we firstly reported the whole-genome sequence of F. proliferatum strain Fp9 isolated from the rice spikelet. The genome was approximately 43.9 Mb with an average GC content of 48.28%, and it was assembled into 12 scaffolds with an N50 length of 4,402,342 bp. There is a close phylogenetic relationship between F. proliferatum and Fusarium fujikuroi, the causal agent of the bakanae disease of rice. The expansion of genes encoding cell wall-degrading enzymes and major facilitator superfamily (MFS) transporters was observed in F. proliferatum relative to other fungi with different nutritional lifestyles. Species-specific genes responsible for mycotoxins biosynthesis were identified among F. proliferatum and other Fusarium species. The expanded and unique genes were supposed to promote F. proliferatum adaptation and the rapid response to the host's infection. The high-quality genome of F. proliferatum strain Fp9 provides a valuable resource for deciphering the mechanisms of pathogenicity and secondary metabolism, and therefore shed light on development of the disease management strategies and detoxification of mycotoxins contamination for spikelet rot disease in rice.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Oryza , Fumonisinas/metabolismo , Fusarium/metabolismo , Humanos , Micotoxinas/genética , Micotoxinas/metabolismo , Oryza/microbiología , Filogenia , Metabolismo Secundario , Virulencia
20.
Front Plant Sci ; 13: 959859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923872

RESUMEN

The stigma exsertion rate (SER) is a complex agronomy phenotype controlled by multiple genes and climate and a key trait affecting the efficiency of hybrid rice seed production. Using a japonica two-line male sterile line (DaS) with a high SER as the donor and a tropical japonica rice (D50) with a low SER as the acceptor to construct a near-isogenic line [NIL (qSE4 DaS)]. Populations were segregated into 2,143 individuals of BC3F2 and BC4F2, and the stigma exsertion quantitative trait locus (QTL) qSE4 was determined to be located within 410.4 Kb between markers RM17157 and RM17227 on chromosome 4. Bioinformatic analysis revealed 13 candidate genes in this region. Sequencing and haplotype analysis indicated that the promoter region of LOC_Os04g43910 (ARF10) had a one-base substitution between the two parents. Further Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analysis showed that the expression level of ARF10 in DaS was significantly higher than in D50. After knocking out ARF10 in the DaS background, it was found that the SER of arf10 (the total SER of the arf10-1 and the arf10-2 were 62.54 and 66.68%, respectively) was significantly lower than that of the wild type (the total SER was 80.97%). Transcriptome and hormone assay analysis showed that arf10 had significantly higher auxin synthesis genes and contents than the wild type and the expression of auxin signaling-related genes was significantly different, Similar results were observed for abscisic acid and jasmonic acid. These results indicate that LOC_Os04g43910 is mostly likely the target gene of qSE4, and the study of its gene function is of great significance for understanding the molecular mechanisms of SER and improving the efficiency of hybrid seed production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...