Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39142288

RESUMEN

Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.

2.
NAR Genom Bioinform ; 6(2): lqae061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38846349

RESUMEN

Population genomics has revolutionized our ability to study bacterial evolution by enabling data-driven discovery of the genetic architecture of trait variation. Genome-wide association studies (GWAS) have more recently become accompanied by genome-wide epistasis and co-selection (GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact multiple loci across the genome. However, existing GWES methods only consider associations between distant pairs of loci within the genome due to the strong impact of linkage-disequilibrium (LD) over short distances. Based on the general functional organisation of genomes it is nevertheless expected that majority of co-selection and epistasis will act within relatively short genomic proximity, on co-variation occurring within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LDWeaver to efficiently generate hypotheses about co-selection using large genomic surveys of multiple major human bacterial pathogen species and validate several findings using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial evolution in the light of rapidly expanding population genomic data.

3.
NPJ Vaccines ; 9(1): 105, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866805

RESUMEN

Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain.

4.
mBio ; 15(6): e0058124, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683013

RESUMEN

Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.


Asunto(s)
Campylobacter coli , Campylobacter jejuni , Epistasis Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Recombinación Genética , Campylobacter jejuni/genética , Campylobacter coli/genética , Evolución Molecular , Adaptación Fisiológica/genética , Adaptación Biológica/genética
5.
J Glob Antimicrob Resist ; 36: 309-318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272215

RESUMEN

OBJECTIVES: Antimicrobial resistant (AMR) Campylobacter is a global health threat; however, there is limited information on genomic determinants of resistance in low- and middle-income countries. We evaluated genomic determinants of AMR using a collection of whole genome sequenced Campylobacter jejuni and C. coli isolates from Iquitos, Peru. METHODS: Campylobacter isolates from two paediatric cohort studies enriched with isolates that demonstrated resistance to ciprofloxacin and azithromycin were sequenced and mined for AMR determinants. RESULTS: The gyrA mutation leading to the Thr86Ile amino acid change was the only gyrA mutation associated with fluoroquinolone resistance identified. The A2075G mutation in 23S rRNA was present, but three other 23S rRNA mutations previously associated with macrolide resistance were not identified. A resistant-enhancing variant of the cmeABC efflux pump genotype (RE-cmeABC) was identified in 36.1% (35/97) of C. jejuni genomes and 17.9% (12/67) of C. coli genomes. Mutations identified in the CmeR-binding site, an inverted repeat sequence in the cmeABC promoter region that increases expression of the operon, were identified in 24/97 C. jejuni and 14/67 C. coli genomes. The presence of these variants, in addition to RE-cmeABC, was noted in 18 of the 24 C. jejuni and 9 of the 14 C. coli genomes. CONCLUSIONS: Both RE-cmeABC and mutations in the CmeR-binding site were strongly associated with the MDR phenotype in C. jejuni and C. coli. This is the first report of RE-cmeABC in Peru and suggests it is a major driver of resistance to the principal therapies used to treat human campylobacteriosis in this setting.


Asunto(s)
Antibacterianos , Campylobacter , Humanos , Niño , Antibacterianos/farmacología , Perú , ARN Ribosómico 23S/genética , Farmacorresistencia Bacteriana/genética , Macrólidos , Campylobacter/genética , Genómica
6.
Ann Clin Microbiol Antimicrob ; 22(1): 109, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098126

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly evolving pathogen that is frequently associated with outbreaks and sustained epidemics. This study investigated the population structure, resistome, virulome, and the correlation between antimicrobial resistance determinants with phenotypic resistance profiles of 36 representative hospital-acquired MRSA isolates recovered from hospital settings in Egypt. RESULTS: The community-acquired MRSA lineage, clonal complex 1 (CC1) was the most frequently detected clone, followed by three other globally disseminated clones, CC121, CC8, and CC22. Most isolates carried SCCmec type V and more than half of isolates demonstrated multi-drug resistant phenotypes. Resistance to linezolid, a last resort antibiotic for treating multidrug resistant MRSA, was observed in 11.11% of the isolates belonging to different genetic backgrounds. Virulome analysis indicated that most isolates harboured a large pool of virulence factors and toxins. Genes encoding aureolysin, gamma hemolysins, and serine proteases were the most frequently detected virulence encoding genes. CC1 was observed to have a high pool of AMR resistance determinants including cfr, qacA, and qacB genes, which are involved in linezolid and quaternary ammonium compounds resistance, as well as high content of virulence-related genes, including both of the PVL toxin genes. Molecular clock analysis revealed that CC1 had the greatest frequency of recombination (compared to mutation) among the four major clones, supporting the role of horizontal gene transfer in modulating AMR and hypervirulence in this clone. CONCLUSIONS: This pilot study provided evidence on the dissemination success of CA-MRSA clone CC1 among Egyptian hospitals. Co-detection of multiple AMR and virulence genes in this lineage pose a broad public health risk, with implications for successful treatment. The results of this study, together with other surveillance studies in Egypt, should be used to develop strategies for controlling MRSA infections in Egyptian health-care settings.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Resistencia a la Meticilina/genética , Egipto/epidemiología , Linezolid/farmacología , Proyectos Piloto , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Células Clonales , Recombinación Genética , Atención a la Salud , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...