Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Open Biol ; 14(6): 230418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835240

RESUMEN

Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into ß-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in ß-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that ß-strands II and III may be good targets for the development of SOD1-associated ALS therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Agregado de Proteínas , Superóxido Dismutasa-1 , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/química , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Mutación , Conformación Proteica en Lámina beta , Modelos Moleculares , Prolina/metabolismo , Amiloide/metabolismo , Amiloide/química , Pliegue de Proteína
2.
STAR Protoc ; 3(4): 101748, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36201320

RESUMEN

Proteinaceous inclusions are associated with neurodegenerative diseases and cell models are often used to determine genetic and chemical modifiers of their formation. This protocol involves the usage of automated microscopy and machine learning-based image analysis to accurately quantify the levels of protein inclusion formation in cultured cells from fluorescence microscopy images. This protocol is highly scalable and can be applied to a few images or large datasets. For complete details on the use and execution of this protocol, please refer to McAlary et al. (2022).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Cuerpos de Inclusión , Aprendizaje Automático , Microscopía Fluorescente , Células Cultivadas
3.
Sci Rep ; 8(1): 15590, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30349065

RESUMEN

Over 160 mutations in superoxide dismutase 1 (SOD1) are associated with familial amyotrophic lateral sclerosis (fALS), where the main pathological feature is deposition of SOD1 into proteinaceous cytoplasmic inclusions. We previously showed that the tryptophan residue at position 32 (W32) mediates the prion-like propagation of SOD1 misfolding in cells, and that a W32S substitution blocks this phenomenon. Here, we used in vitro protein assays to demonstrate that a W32S substitution in SOD1-fALS mutants significantly diminishes their propensity to aggregate whilst paradoxically decreasing protein stability. We also show SOD1-W32S to be resistant to seeded aggregation, despite its high abundance of unfolded protein. A cell-based aggregation assay demonstrates that W32S substitution significantly mitigates inclusion formation. Furthermore, this assay reveals that W32 in SOD1 is necessary for the formation of a competent seed for aggregation under these experimental conditions. Following the observed importance of W32 for aggregation, we established that treatment of living cells with the W32-interacting 5-Fluorouridine (5-FUrd), and its FDA approved analogue 5-Fluorouracil (5-FU), substantially attenuate inclusion formation similarly to W32S substitution. Altogether, we highlight W32 as a significant contributor to SOD1 aggregation, and propose that 5-FUrd and 5-FU present promising lead drug candidates for the treatment of SOD1-associated ALS.


Asunto(s)
Proteínas Mutantes/metabolismo , Agregación Patológica de Proteínas , Pirimidinas/metabolismo , Superóxido Dismutasa-1/metabolismo , Triptófano/metabolismo , Sustitución de Aminoácidos , Citometría de Flujo , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Mutantes/química , Estabilidad Proteica , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA