Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13597, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866871

RESUMEN

Accurate river streamflow prediction is pivotal for effective resource planning and flood risk management. Traditional river streamflow forecasting models encounter challenges such as nonlinearity, stochastic behavior, and convergence reliability. To overcome these, we introduce novel hybrid models that combine extreme learning machines (ELM) with cutting-edge mathematical inspired metaheuristic optimization algorithms, including Pareto-like sequential sampling (PSS), weighted mean of vectors (INFO), and the Runge-Kutta optimizer (RUN). Our comparative assessment includes 20 hybrid models across eight metaheuristic categories, using streamflow data from the Aswan High Dam on the Nile River. Our findings highlight the superior performance of mathematically based models, which demonstrate enhanced predictive accuracy, robust convergence, and sustained stability. Specifically, the PSS-ELM model achieves superior performance with a root mean square error of 2.0667, a Pearson's correlation index (R) of 0.9374, and a Nash-Sutcliffe efficiency (NSE) of 0.8642. Additionally, INFO-ELM and RUN-ELM models exhibit robust convergence with mean absolute percentage errors of 15.21% and 15.28% respectively, a mean absolute errors of 1.2145 and 1.2105, and high Kling-Gupta efficiencies values of 0.9113 and 0.9124, respectively. These findings suggest that the adoption of our proposed models significantly enhances water management strategies and reduces any risks.

3.
Sci Total Environ ; 912: 168760, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38013106

RESUMEN

A modeling framework utilizing the coactive neuro-fuzzy inference system (CANFIS) has been developed for multi-lead time groundwater level (GWL) forecasting in four different wells located in Texas and Florida, USA. Various model input combinations, including GWL, precipitation, temperature, and surface water level variables, have been derived based on proposed correlation analysis using singular spectrum analysis (SSA) remainders. The models have been trained on data subsets of varying lengths to identify the optimal training data duration. Additionally, we have introduced the bagging ensemble learning method to enhance the performance of the CANFIS model. As part of a comprehensive model evaluation process, the best-performing CANFIS model for each forecasting scenario has undergone uncertainty analysis using bootstrap sampling. Our results reveal that the CANFIS model performs satisfactorily for daily forecasting but leaves room for improvement in monthly forecasting, particularly for two-month and three-month ahead forecasts. Moreover, we have identified several optimal input combinations, highlighting the significance of the temperature variable in monthly forecasting. Furthermore, our findings indicate that additional training data does not necessarily lead to improved performance. The ensemble CANFIS model has demonstrated significant performance enhancement, particularly for monthly forecasting. Finally, the CANFIS model uncertainty analysis has shown satisfactory results for daily forecasting scenarios, while monthly forecasting models exhibit higher uncertainties, particularly during periods with distinctly different GWL fluctuation patterns.

4.
Heliyon ; 9(10): e20543, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37817990

RESUMEN

The Gulf Cooperation Council (GCC) countries include Bahrain, Kuwait, Saudi Arabia, Sultanate of Oman, Qatar, and United Arab Emirates. The GCC countries are located in an arid region. They have limited renewable water resources due to scarcity of rainfall. This paper provides the most recent and accurate quantitative and qualitative assessment of available water resources and demands in the GCC countries. The annual renewable surface water, desalinated capacity, wastewater treatment capacity, and per capita water consumption in the GCC countries are assessed. The possible impacts of climate change are discussed. The annual renewable surface water, desalinated capacity, and wastewater treatment capacity in the GCC countries are estimated as 4.14, 26.4, and 10.07 billion m3, respectively. The average per capita water consumption is around 550 l/d. The GCC countries have high water footprints. Although tertiary treated, the reuse of treated wastewater is limited and constrained to the development of forests and green areas. Water demand trends reveal the need for the implementation of sustainable water management programs. Emerging solutions include imposing a new tariff system, improving irrigation efficiency, controlling agricultural water consumption, developing innovative desalination and treatment technologies, maximizing treated wastewater utilization and rainwater harvesting, eliminating leakage in networks, and considering virtual water concepts in the water budget and planning.

5.
Sci Rep ; 13(1): 18260, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880280

RESUMEN

This study aims to assess the practicality of utilizing artificial intelligence (AI) to replicate the adsorption capability of functionalized carbon nanotubes (CNTs) in the context of methylene blue (MB) removal. The process of generating the carbon nanotubes involved the pyrolysis of acetylene under conditions that were determined to be optimal. These conditions included a reaction temperature of 550 °C, a reaction time of 37.3 min, and a gas ratio (H2/C2H2) of 1.0. The experimental data pertaining to MB adsorption on CNTs was found to be extremely well-suited to the Pseudo-second-order model, as evidenced by an R2 value of 0.998, an X2 value of 5.75, a qe value of 163.93 (mg/g), and a K2 value of 6.34 × 10-4 (g/mg min).The MB adsorption system exhibited the best agreement with the Langmuir model, yielding an R2 of 0.989, RL value of 0.031, qm value of 250.0 mg/g. The results of AI modelling demonstrated a remarkable performance using a recurrent neural network, achieving with the highest correlation coefficient of R2 = 0.9471. Additionally, the feed-forward neural network yielded a correlation coefficient of R2 = 0.9658. The modeling results hold promise for accurately predicting the adsorption capacity of CNTs, which can potentially enhance their efficiency in removing methylene blue from wastewater.

6.
Sci Rep ; 13(1): 14574, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666880

RESUMEN

Due to excessive streamflow (SF), Peninsular Malaysia has historically experienced floods and droughts. Forecasting streamflow to mitigate municipal and environmental damage is therefore crucial. Streamflow prediction has been extensively demonstrated in the literature to estimate the continuous values of streamflow level. Prediction of continuous values of streamflow is not necessary in several applications and at the same time it is very challenging task because of uncertainty. A streamflow category prediction is more advantageous for addressing the uncertainty in numerical point forecasting, considering that its predictions are linked to a propensity to belong to the pre-defined classes. Here, we formulate streamflow prediction as a time series classification with discrete ranges of values, each representing a class to classify streamflow into five or ten, respectively, using machine learning approaches in various rivers in Malaysia. The findings reveal that several models, specifically LSTM, outperform others in predicting the following n-time steps of streamflow because LSTM is able to learn the mapping between streamflow time series of 2 or 3 days ahead more than support vector machine (SVM) and gradient boosting (GB). LSTM produces higher F1 score in various rivers (by 5% in Johor, 2% in Kelantan and Melaka and Selangor, 4% in Perlis) in 2 days ahead scenario. Furthermore, the ensemble stacking of the SVM and GB achieves high performance in terms of F1 score and quadratic weighted kappa. Ensemble stacking gives 3% higher F1 score in Perak river compared to SVM and gradient boosting.

7.
Heliyon ; 9(9): e19426, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662729

RESUMEN

In consideration of the distinct behavior of machine learning (ML) algorithms, six well-defined ML used were carried out in this study for predicting sea level on a day-to-day basis. Data compiled from 1985 to 2018 was utilized for training and testing the developed models. An assessment of the multiple statistics-driven regression algorithms resulted such that each tested location was associated with a particular preferred model. The following were the developed best models for their respective study areas: In Peninsular Malaysia, the interactions linear regression model was the best at Pulau Langkawi (RMSE = 19.066), the Matern 5/2 gaussian process regression model at Geting (RMSE = 49.891), and the trilayered artificial neural network at Pulau Pinang (RMSE = 20.026), while the linear regression model was the best at Sandakan in Sabah, East Malaysia (RMSE = 14.054). Other metrics, such as MAE and R-square, were also at their best values, each providing its best values, further substantiating the RMSE respectively, at each of the study areas. These empirical statistics (or metrics) also revealed that despite employing sea level as the sole parameter, results obtained were exceptional better when utilizing a 7-day lag, regardless of the model used. Notably, lag variables with less than a 7-day lag could degrade the model's accuracy in representing ground reality. The study emphasizes the importance of thorough training and testing of ML to aid decision-makers in developing mitigation actions for the climate change phenomena of sea level rise through reliable ML.

8.
Heliyon ; 9(8): e18424, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554814

RESUMEN

Cities are growing geographically in response to the enormous increase in urban population; consequently, comprehending growth and environmental changes is critical for long-term planning. Urbanization transforms naturally permeable surfaces into impermeable surfaces, causing an increase in urban land surface temperature, leading to the phenomenon known as urban heat islands. The urban heat islands are noticeable across Malaysia's rural communities and villages, particularly in Kuala Lumpur. These effects must be addressed to slow, if not halt, climate change and meet the Paris Agreement's 2030 goal. The study posits an application of thermal remote sensing utilizing a space-borne satellite-based technique to demonstrate urban evolution for urban heat island analysis and its relationship to land surface temperature. The urban heat island (UHI) was analyzed by converting infrared radiation into visible thermal images utilizing thermal imaging from remote sensing techniques. The heat island is validated by reference to the characteristics of the normalized difference vegetation index (NDVI), which define the land surface temperature (LST) of distinct locations. Based on the digital information from the satellite, the highest temperature difference between urban and rural regions for a few chosen cities in 2013 varied from 10.8 to 25.5 °C, while in 2021, it ranged from 16.1 to 26.73 °C, highlighting crucial temperature changes. The results from ANOVA test has substantially strengthened the credibility of the significant temperature changes. Some notable reveals are as follows: The Sungai Batu area, due to its rapid development and industry growth, was more vulnerable to elevated urban heat due to reduced vegetation cover; therefore, higher relative vulnerability. Contrary, the Bukit Ketumbar area, which region lies in the woodland region, experienced the lowest, with urban heat islands reading from 2013 at -0.3044 and 0.0154 in 2021. It shows that despite having urban heat islands increase two-fold from 2013 to 2021, increasing the amount of vegetation coverage is a simple and effective way of reducing the urban heat island effect, as evidenced by the low urban heat islands in the Bukit Ketumbar woodland region. The study findings are critical for advising municipal officials and urban planners to decrease urban heat islands by investing in open green spaces.

9.
Heliyon ; 9(7): e17689, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456046

RESUMEN

Accurate water level prediction for both lake and river is essential for flood warning and freshwater resource management. In this study, three machine learning algorithms: multi-layer perceptron neural network (MLP-NN), long short-term memory neural network (LSTM) and extreme gradient boosting XGBoost were applied to develop water level forecasting models in Muda River, Malaysia. The models were developed using limited amount of daily water level and meteorological data from 2016 to 2018. Different input scenarios were tested to investigate the performance of the models. The results of the evaluation showed that the MLP model outperformed both the LSTM and the XGBoost models in predicting water levels, with an overall accuracy score of 0.871 compared to 0.865 for LSTM and 0.831 for XGBoost. No noticeable improvement has been achieved after incorporating meteorological data into the models. Even though the lowest reported performance was reported by the XGBoost, it is the faster of the three algorithms due to its advanced parallel processing capabilities and distributed computing architecture. In terms of different time horizons, the LSTM model was found to be more accurate than the MLP and XGBoost model when predicting 7 days ahead, demonstrating its superiority in capturing long-term dependencies. Therefore, it can be concluded that each ML model has its own merits and weaknesses, and the performance of different ML models differs on each case because these models depends largely on the quantity and quality of data available for the model training.

10.
Heliyon ; 9(8): e18506, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520967

RESUMEN

The impact of the suspended sediment load (SSL) on environmental health, agricultural operations, and water resources planning, is significant. The deposit of SSL restricts the streamflow region, affecting aquatic life migration and finally causing a river course shift. As a result, data on suspended sediments and their fluctuations are essential for a number of authorities especially for water resources decision makers. SSL prediction is often difficult due to a number of issues such as site-specific data, site-specific models, lack of several substantial components to use in prediction, and complexity its pattern. In the past two decades, many machine learning algorithms have shown huge potential for SSL river prediction. However, these models did not provide very reliable results, which led to the conclusion that the accuracy of SSL prediction should be improved. As a result, in order to solve past concerns, this research proposes a Long Short-Term Memory (LSTM) model for SSL prediction. The proposed model was applied for SSL prediction in Johor River located in Malaysia. The study allocated data for suspended sediment load and river flow for period 2010 to 2020. In the current research, four alternative models-Multi-Layer Perceptron (MLP) neural network, Support Vector Regression (SVR), Random Forest (RF), and Long Short-term Memory (LSTM) were investigated to predict the suspended sediment load. The proposed model attained a high correlation value between predicted and actual SSL (0.97), with a minimum RMSE (148.4 ton/day and a minimum MAE (33.43 ton/day). and can thus be generalized for application in similar rivers around the world.

11.
Heliyon ; 9(5): e15740, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153389

RESUMEN

The hydropower Plant in Terengganu is one of the major hydroelectric dams currently operated in Malaysia. For better operating and scheduling, accurate modelling of natural inflow is vital for a hydroelectric dam. The rainfall-runoff model is among the most reliable models in predicting the inflow based on the rainfall events. Such a model's reliability depends entirely on the reliability and consistency of the rainfall events assessed. However, due to the hydropower plant's remote location, the cost associated with maintaining the installed rainfall stations became a burden. Therefore, the study aims to create a continuous set of rainfall data before, during, and after the construction of a hydropower plant and simulate a rainfall-runoff model for the area. It also examines the reliability of alternative methods by combining rainfall data from two sources: the general circulation model and tropical rainfall measuring mission. Rainfall data from ground stations and generated data using inverse distance weighted method will be compared. The statistical downscaling model will obtain regional rainfall from the general circulation model. The data will be divided into three stages to evaluate the accuracy of the models in capturing inflow changes. The results revealed that rainfall data from TRMM is more correlated to ground station data with R2 = 0.606, while SDSM data has R2 = 0.592. The proposed inflow model based on GCM-TRMM data showed higher precision compared to the model using ground station data. The proposed model consistently predicted inflow during three stages with R2 values ranging from 0.75 to 0.93.

12.
Heliyon ; 9(4): e15274, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095945

RESUMEN

Iraq is facing a dire water crisis due to the decrease in water quantities flow in Tigris and Euphrates Rivers. Due to population growth, several studies estimated the water shortage in 2035 to be 44 Billion Cubic Meter (BCM). Thus, Water Budget-Salt Balance Model (WBSBM) has been developed, applied and examined for the Euphrates River basin to compute the net water saving from Non-Conventional Water Resources (NCWRs). WBSBM includes 4-stages; the first is to identify the required data correspond to the conventional water resources in the study-area. The second stage is demonstrating the water-users activities. Thirdly, develop model through the proposed NCWR projects that reflect the required data. The final stage involves net water saving computation while applying all the NCWR projects simultaneously. The results obtained the optimal potential net water saving amount, which are 6.823 and 6.626 BCM/year in 2025 and 2035, respectively. In conclusion, the proposed WBSBM model has comprehensively examined different scenarios of utilizing NCWRs and has determined the optimal potential the net water saving amounts.

13.
Sci Rep ; 13(1): 6966, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117263

RESUMEN

To ease water scarcity, dynamic programming, stochastic dynamic programming, and heuristic algorithms have been applied to solve problem matters related to water resources. Development, operation, and management are vital in a reservoir operating policy, especially when the reservoir serves a complex objective. In this study, an attempt via metaheuristic algorithms, namely the Harris Hawks Optimisation (HHO) Algorithm and the Opposite Based Learning of HHO (OBL-HHO) are made to minimise the water deficit as well as mitigate floods at downstream of the Klang Gate Dam (KGD). Due to trade-offs between water supply and flood management, the HHO and OBL-HHO models have configurable thresholds to optimise the KGD reservoir operation. To determine the efficacy of the HHO and OBL-HHO in reservoir optimisation, reliability, vulnerability, and resilience are risk measures evaluated. If inflow categories are omitted, the OBL-HHO meets 71.49% of demand compared to 54.83% for the standalone HHO. The HHO proved superior to OBL-HHO in satisfying demand during medium inflows, achieving 38.60% compared to 20.61%, even though the HHO may have experienced water loss at the end of the storage level. The HHO is still a promising method, as proven by its reliability and resilience indices compared to other published heuristic algorithms: at 62.50% and 1.56, respectively. The Artificial Bee Colony (ABC) outcomes satisfied demand at 61.36%, 59.47% with the Particle Swarm Optimisation (PSO), 55.68% with the real-coded Genetic Algorithm (GA), and 23.5 percent with the binary GA. For resilience, the ABC scored 0.16, PSO scored 0.15, and real coded GA scored 0.14 whilst the binary-GA has the worst failure recovery algorithm with 0.09.

14.
Sci Total Environ ; 882: 163473, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37075988

RESUMEN

The lack of perennial streams or surface water in most arid countries necessitates input modification and water scarcity/security equation calculation as per the water resource systems and physiographic conditions in these countries. The contributions of nonconventional and virtual water resources to water security have been disregarded or undervalued in previous research on global water scarcity. This study addresses this knowledge gap by developing a new framework for estimating water scarcity/security. The proposed framework considers the contributions of unconventional and virtual water resources and the roles of economics, technology, water availability, service accessibility, water safety and quality, water management, and resilience to threats on water and food security, and considers institutional changes required to adjust to water scarcity. To manage water demand, the new framework incorporates metrics for all categories of water resources. Although the framework was specifically designed for arid regions, particularly the Gulf Cooperation Council (GCC) countries, it is applicable to non-arid nations too. The framework was implemented in GCC countries, which are suitable examples of arid countries with notable virtual commerce. The ratio of abstraction from freshwater resources to renewability from conventional water sources was calculated to determine the extent of water stress in each country. The values obtained from measurement varied from 0.4 (the optimal threshold level for Bahrain) to 22 (severe water stress/low water security in Kuwait). Considering the nonconventional and abstracted nonrenewable groundwater volumes from the total water demand in the GCC, the minimum water stress value measured was 0.13 in Kuwait, suggesting considerable reliance on nonconventional water resources along with little domestic food production to achieve water security. The novel water scarcity/stress index framework was found to be appropriate for arid and hyper-arid regions, such as the GCC, where virtual water trade has a major positive impact on water security.

15.
Heliyon ; 9(3): e14584, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967941

RESUMEN

Clean water and sanitation and climate actions represent two of the seventeen United Nations Sustainable Development Goals (SDGs). Although challenging, the two goals can be achieved by 2030 through unconventional and innovative solutions. Scientific research related to clean water and sanitation (SDG 6) and urgent actions to combat climate change and its impacts (SDG 13) will help develop new technologies to support the two goals and can bridge the gap between practitioners and academia's to achieve sustainability. The Gulf Cooperation Council (GCC) countries are located in an arid region. Their water and climate research activities and outcomes may provide a good contribution toward achieving the two goals. This study used text mining and bibliometric methods to analyze water and climate research contributions to achieve SDGs 6 and 13 in GCC countries. Results revealed that there is an increase in research publications after 2016 in the areas of water and climate in the GCC countries involving a longstanding international collaboration with developed countries. Research topics were focused on wastewater treatment, contamination, heavy metal, groundwater, and climate change impacts. Under SDG 6, most of the publications were research articles (77.3%), followed by reviews (11.1%), and the rest were book chapters and conference papers. For SDG 13, 75.1% of the publications are research articles, 10.9% are conference papers, and 8% are reviews. The research outcomes in the GCC countries have clearly contributed to the development of water and climate strategies and international collaborations to achieve the two goals.

16.
Sci Rep ; 11(1): 18935, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556676

RESUMEN

Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.

17.
Sci Rep ; 11(1): 7826, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837236

RESUMEN

Rivers carry suspended sediments along with their flow. These sediments deposit at different places depending on the discharge and course of the river. However, the deposition of these sediments impacts environmental health, agricultural activities, and portable water sources. Deposition of suspended sediments reduces the flow area, thus affecting the movement of aquatic lives and ultimately leading to the change of river course. Thus, the data of suspended sediments and their variation is crucial information for various authorities. Various authorities require the forecasted data of suspended sediments in the river to operate various hydraulic structures properly. Usually, the prediction of suspended sediment concentration (SSC) is challenging due to various factors, including site-related data, site-related modelling, lack of multiple observed factors used for prediction, and pattern complexity.Therefore, to address previous problems, this study proposes a Long Short Term Memory model to predict suspended sediments in Malaysia's Johor River utilizing only one observed factor, including discharge data. The data was collected for the period of 1988-1998. Four different models were tested, in this study, for the prediction of suspended sediments, which are: ElasticNet Linear Regression (L.R.), Multi-Layer Perceptron (MLP) neural network, Extreme Gradient Boosting, and Long Short-Term Memory. Predictions were analysed based on four different scenarios such as daily, weekly, 10-daily, and monthly. Performance evaluation stated that Long Short-Term Memory outperformed other models with the regression values of 92.01%, 96.56%, 96.71%, and 99.45% daily, weekly, 10-days, and monthly scenarios, respectively.

18.
Entropy (Basel) ; 22(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33286321

RESUMEN

In this study, the analysis of the extreme sea level was carried out by using 10 years (2007-2016) of hourly tide gauge data of Karachi port station along the Pakistan coast. Observations revealed that the magnitudes of the tides usually exceeded the storm surges at this station. The main observation for this duration and the subsequent analysis showed that in June 2007 a tropical Cyclone "Yemyin" hit the Pakistan coast. The joint probability method (JPM) and the annual maximum method (AMM) were used for statistical analysis to find out the return periods of different extreme sea levels. According to the achieved results, the AMM and JPM methods erre compatible with each other for the Karachi coast and remained well within the range of 95% confidence. For the JPM method, the highest astronomical tide (HAT) of the Karachi coast was considered as the threshold and the sea levels above it were considered extreme sea levels. The 10 annual observed sea level maxima, in the recent past, showed an increasing trend for extreme sea levels. In the study period, the increment rates of 3.6 mm/year and 2.1 mm/year were observed for mean sea level and extreme sea level, respectively, along the Karachi coast. Tidal analysis, for the Karachi tide gauge data, showed less dependency of the extreme sea levels on the non-tidal residuals. By applying the Merrifield criteria of mean annual maximum water level ratio, it was found that the Karachi coast was tidally dominated and the non-tidal residual contribution was just 10%. The examination of the highest water level event (13 June 2014) during the study period, further favored the tidal dominance as compared to the non-tidal component along the Karachi coast.

19.
PLoS One ; 15(9): e0239509, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986717

RESUMEN

In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.


Asunto(s)
Nitrógeno/química , Ríos/química , Agricultura/métodos , Monitoreo del Ambiente/métodos , Hidrología/métodos , Malasia , Redes Neurales de la Computación , Contaminantes Químicos del Agua/química , Calidad del Agua
20.
Sci Rep ; 10(1): 4684, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170078

RESUMEN

In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...