Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 20(198): 20220472, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596454

RESUMEN

About 20 elements underlie biology and thus constrain biomass production. Recent systems-level observations indicate that altered supply of one element impacts the processing of most elements encompassing an organism (i.e. ionome). Little is known about the evolutionary tendencies of ionomes as populations adapt to distinct biogeochemical environments. We evolved the bacterium Serratia marcescens under five conditions (i.e. low carbon, nitrogen, phosphorus, iron or manganese) that limited the yield of the ancestor compared with replete medium, and measured the concentrations and use efficiency of these five, and five other elements. Both physiological responses of the ancestor, as well as evolutionary responses of descendants to experimental environments involved changes in the content and use efficiencies of the limiting element, and several others. Differences in coefficients of variation in elemental contents based on biological functions were evident, with those involved in biochemical building (C, N, P, S) varying least, followed by biochemical balance (Ca, K, Mg, Na), and biochemical catalysis (Fe, Mn). Finally, descendants evolved to mitigate elemental imbalances evident in the ancestor in response to limiting conditions. Understanding the tendencies of such ionomic responses will be useful to better forecast biological responses to geochemical changes.


Asunto(s)
Nitrógeno , Fósforo , Biomasa , Adaptación Fisiológica , Hierro
2.
Mol Ecol ; 32(6): 1478-1496, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35119153

RESUMEN

Speciation genomic studies have revealed that genomes of diverging lineages are shaped jointly by the actions of gene flow and selection. These evolutionary forces acting in concert with processes such as recombination and genome features such as gene density shape a mosaic landscape of divergence. We investigated the roles of recombination and gene density in shaping the patterns of differentiation and divergence between the cyclically parthenogenetic ecological sister-taxa, Daphnia pulicaria and Daphnia pulex. First, we assembled a phased chromosome-scale genome assembly using trio-binning for D. pulicaria and constructed a genetic map using an F2-intercross panel to understand sex-specific recombination rate heterogeneity. Finally, we used a ddRADseq data set with broad geographic sampling of D. pulicaria, D. pulex, and their hybrids to understand the patterns of genome-scale divergence and demographic parameters. Our study provides the first sex-specific estimates of recombination rates for a cyclical parthenogen, and unlike other eukaryotic species, we observed male-biased heterochiasmy in D. pulicaria, which may be related to this somewhat unique breeding mode. Additionally, regions of high gene density and recombination are generally more divergent than regions of suppressed recombination. Outlier analysis indicated that divergent genomic regions are probably driven by selection on D. pulicaria, the derived lineage colonizing a novel lake habitat. Together, our study supports a scenario of selection acting on genes related to local adaptation shaping genome-wide patterns of differentiation despite high local recombination rates in this species complex. Finally, we discuss the limitations of our data in light of demographic uncertainty.


Asunto(s)
Aclimatación , Genómica , Masculino , Femenino , Animales , Evolución Biológica , Daphnia/genética , Recombinación Genética/genética
3.
J Anim Ecol ; 90(4): 909-916, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368234

RESUMEN

Phosphorus (P) is essential for growth of all organisms, and P content is correlated with growth in most taxa. Although P content was initially considered to be a trait fixed at the species level, there is growing evidence for considerable intraspecific variation. Selection on such variation can thus alter the rates at which P fluxes through food webs. Nevertheless, prior work describing the sources and extent of intraspecific variation in P content were not genetically explicit, confounded by unknown genetic background and evolutionary history. We constructed an F2 recombinant population of the dominant freshwater grazer, Daphnia pulicaria to mitigate such issues. F2 recombinants exhibited considerable variation in growth rate, P content (0.49%-1.97%), P use efficiency (PUE; 51-208 mg biomass/mg P), and correlated traits such as hatching time of resting eggs, in common garden conditions. These results clearly demonstrate the scope of genetic recombination in generating variation in ecologically relevant traits. The absence of environmental selection is a likely component driving such variation not observed in natural settings. Although phosphoglucose isomerase (PGI) genotype was significantly associated with variation in hatching time of resting eggs, contrary to prior work with less rigorous designs, and allelic variation at the PGI locus did not explain variation in P content and PUE of Daphnia, indicating that such quantitative traits are under polygenic control. Together, these results suggest that although there is considerable genetic scope for variation in key ecologically relevant traits, such as P content and efficiency of P use, these traits are likely under strong stabilizing selection, most likely due to selection on growth rate and size. Importantly, our observations suggest that anthropogenic alterations to P supply due to eutrophication could alter selection on these traits, thereby rapidly altering the role Daphnia plays in the P cycle of lakes.


Asunto(s)
Daphnia , Pulicaria , Animales , Daphnia/genética , Genotipo , Herbivoria , Fósforo
4.
Ecol Lett ; 23(7): 1064-1072, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32301270

RESUMEN

The growth rate hypothesis posits that the rate of protein synthesis is constrained by phosphorus (P) supply. P scarcity invokes differential expression of genes involved in processing of most if not all elements encompassing an individual (the ionome). Whether such ionome-wide adjustments to P supply impact growth and trophic interactions remains unclear. We quantified the ionomes of a resource-consumer pair in contrasting P supply conditions. Consumer growth penalty was driven by not only P imbalance between trophic levels but also imbalances in other elements, reflecting complex physiological adjustments made by both the resource and the consumer. Mitigating such imbalances requires energy and should impact the efficiency at which assimilated nutrients are converted to biomass. Correlated shifts in the handling of multiple elements, and variation in the supplies of such elements could underlie vast heterogeneity in the rates at which organisms and ecosystems accrue biomass as a function of P supply.


Asunto(s)
Daphnia , Fósforo , Animales , Biomasa , Ecosistema , Cadena Alimentaria
5.
R Soc Open Sci ; 4(12): 170770, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29308224

RESUMEN

The framework ecological stoichiometry uses elemental composition of species to make predictions about growth and competitive ability in defined elemental supply conditions. Although intraspecific differences in stoichiometry have been observed, we have yet to understand the mechanisms generating and maintaining such variation. We used variation in phosphorus (P) content within a Daphnia species to test the extent to which %P can explain variation in growth and competition. Further, we measured 33P kinetics (acquisition, assimilation, incorporation and retention) to understand the extent to which such variables improved predictions. Genotypes showed significant variation in P content, 33P kinetics and growth rate. P content alone was a poor predictor of growth rate and competitive ability. While most genotypes exhibited the typical growth penalty under P limitation, a few varied little in growth between P diets. These observations indicate that some genotypes can maintain growth under P-limited conditions by altering P use, suggesting that decomposing P content of an individual into physiological components of P kinetics will improve stoichiometric models. More generally, attention to the interplay between nutrient content and nutrient-use is required to make inferences regarding the success of genotypes in defined conditions of nutrient supply.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...