Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 29695, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27440050

RESUMEN

Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the 'singlet oxygen generator' miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complejo II de Transporte de Electrones/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Inactivación por Luz Asistida por Cromóforo , Tamaño de la Nidada , Complejo II de Transporte de Electrones/metabolismo , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mitocondrias/metabolismo , Mutación Missense , Optogenética
2.
PLoS One ; 11(7): e0159989, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27459203

RESUMEN

The mitochondrial unfolded protein response (UPRmt) is a surveillance pathway that defends proteostasis in the "powerhouse" of the cell. Activation of the UPRmt protects against stresses imposed by reactive oxygen species, respiratory chain deficits, and pathologic bacteria. Consistent with the UPRmt's role in adaption, we found that either its pharmacological or genetic activation by ethidium bromide (EtBr) or RNAi of the mitochondrial AAA-protease spg-7 was sufficient to reduce death in an anoxia-based Caenorhabditis elegans model of ischemia-reperfusion injury. The UPRmt-specific transcription factor atfs-1 was necessary for protection and atfs-1 gain-of-function (gf) mutants were endogenously protected from both death and dysfunction. Neurons exhibited less axonal degeneration following non-lethal anoxia-reperfusion (A-R) when the UPRmt was pre-activated, and consistent with the concept of mitochondrial stress leading to cell non-autonomous (ie. "remote") effects, we found that restricted activation of the UPRmt in neurons decreased A-R death. However, expression of the atfs-1(gf) mutant in neurons, which resulted in a robust activation of a neuronal UPRmt, did not upregulate the UPRmt in distal tissues, nor did it protect the worms from A-R toxicity. These findings suggest that remote signaling requires additional component(s) acting downstream of de facto mitochondrial stress.


Asunto(s)
Caenorhabditis elegans/metabolismo , Hipoxia/metabolismo , Metaloendopeptidasas/metabolismo , Interferencia de ARN , Daño por Reperfusión/metabolismo , Respuesta de Proteína Desplegada , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metaloendopeptidasas/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Brain Res ; 1543: 28-37, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24275196

RESUMEN

Carbonic anhydrases (CAs) comprise a family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. CAs contribute to a myriad of physiological processes, including pH regulation, anion transport and water balance. To date, 16 known members of the mammalian alpha-CA family have been identified. Given that the catalytic family members share identical reaction chemistry, their physiologic roles are influenced greatly by their tissue and sub-cellular locations. CAVI is the lone secreted CA and exists in both saliva and the gastrointestinal mucosa. An alternative, stress-inducible isoform of CAVI (CAVI-b) has been shown to be expressed from a cryptic promoter that is activated by the CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP). The CAVI-b isoform is not secreted and is currently of unknown physiological function. Here we use neuronal models, including a model derived using Car6 and CHOP gene ablations, to delineate a role for CAVI-b in ischemic protection. Our results demonstrate that CAVI-b expression, which is increased through CHOP-signaling in response to unfolded protein stress, is also increased by oxygen-glucose deprivation (OGD). While enforced expression of CAVI-b is not sufficient to protect against ischemia, CHOP regulation of CAVI-b is necessary for adaptive changes mediated by BDNF that reduce subsequent ischemic damage. These results suggest that CAVI-b comprises a necessary component of a larger adaptive signaling pathway downstream of CHOP.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Anhidrasas Carbónicas/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Factor de Transcripción CHOP/metabolismo , Análisis de Varianza , Animales , Anhidrasas Carbónicas/deficiencia , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glucosa/deficiencia , L-Lactato Deshidrogenasa/metabolismo , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factor de Transcripción CHOP/genética
4.
FEBS Lett ; 586(4): 428-34, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22281198

RESUMEN

Hypoxic preconditioning (HP) is an evolutionarily-conserved mechanism that protects an organism against stress. The mitochondrial ATP-sensitive K(+) channel (mK(ATP)) plays an essential role in the protective signaling, but remains molecularly undefined. Several lines of evidence suggest that mK(ATP) may arise from an inward rectifying K(+) channel (Kir). The genetic model organism Caenorhabditis elegans exhibits HP and displays mK(ATP) activity. Here, we investigate the tissue expression profile of the three C. elegans Kir genes and demonstrate that mutant strains where the irk genes have been deleted either individually or in combination can be protected by HP and exhibit robust mK(ATP) channel activity in purified mitochondria. These data suggest that the mK(ATP) in C. elegans does not arise from a Kir derived channel.


Asunto(s)
Caenorhabditis elegans/metabolismo , Canales KATP/metabolismo , Mitocondrias/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Genes de Helminto , Proteínas Fluorescentes Verdes/genética , Hipoxia/metabolismo , Precondicionamiento Isquémico , Canales de Potasio de Rectificación Interna/metabolismo , Estrés Fisiológico
5.
Biochim Biophys Acta ; 1823(4): 808-17, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22245567

RESUMEN

BACKGROUND: Carbonic anhydrases (CA) catalyze the inter-conversion of CO(2) with HCO(3) and H(+), and are involved in a wide variety of physiologic processes such as anion transport, pH regulation, and water balance. In mammals there are sixteen members of the classical α-type CA family, while the simple genetic model organism Caenorhabditis elegans codes for six αCA isoforms (cah-1 through cah-6). METHODS: Fluorescent reporter constructs were used to analyze gene promoter usage, splice variation, and protein localization in transgenic worms. Catalytic activity of recombinant CA proteins was assessed using Hansson's histochemistry. CA's ability to regulate pH as a function of CO(2) and HCO(3) was measured using dynamic fluorescent imaging of genetically-targeted biosensors. RESULTS: Each of the six CA genes was found to be expressed in a distinct repertoire of cell types. Surprisingly, worms also expressed a catalytically-active CA splice variant, cah-4a, in which an alternative first exon targeted the protein to the nucleus. Cah-4a expression was restricted mainly to the nervous system, where it was found in nearly all neurons, and recombinant CAH-4A protein could regulate pH in the nucleus. CONCLUSIONS: In addition to establishing C. elegans as a platform for studying αCA function, this is the first example of a nuclear-targeted αCA in any organism to date. GENERAL SIGNIFICANCE: A classical αCA isoform is targeted exclusively to the nucleus where its activity may impact nuclear physiologic and pathophysiologic responses.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Anhidrasas Carbónicas/metabolismo , Núcleo Celular/enzimología , Animales , Bicarbonatos/farmacología , Biocatálisis/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Anhidrasas Carbónicas/genética , Núcleo Celular/efectos de los fármacos , Exones/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma de los Helmintos/genética , Concentración de Iones de Hidrógeno/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Familia de Multigenes , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo
6.
PLoS One ; 6(12): e28287, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22145034

RESUMEN

Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K(+) transport and APC. The canonical Ca(2+)-activated BK (or "maxi-K") channel SLO1 was dispensable for both mitochondrial K(+) transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K(+) channel SLO2 was required, and that SLO2-dependent mitochondrial K(+) transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K(+).


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Citoprotección , Hipoxia/prevención & control , Precondicionamiento Isquémico Miocárdico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/metabolismo , Anestésicos por Inhalación , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Immunoblotting , Indoles/farmacología , Transporte Iónico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bloqueadores de los Canales de Potasio/farmacología
7.
Biochem Biophys Res Commun ; 376(3): 625-8, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18809388

RESUMEN

Ischemic preconditioning (IPC) is an evolutionarily conserved endogenous mechanism whereby short periods of non-lethal exposure to hypoxia alleviate damage caused by subsequent ischemia reperfusion (IR). Pharmacologic targeting has suggested that the mitochondrial ATP-sensitive potassium channel (mK(ATP)) is central to IPC signaling, despite its lack of molecular identity. Here, we report that isolated Caenorhabditis elegans mitochondria have a K(ATP) channel with the same physiologic and pharmacologic characteristics as the vertebrate channel. Since C. elegans also exhibit IPC, our observations provide a framework to study the role of mK(ATP) in IR injury in a genetic model organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Precondicionamiento Isquémico , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Daño por Reperfusión/metabolismo , Animales , Modelos Animales , Canales de Potasio/agonistas , Canales de Potasio/efectos de los fármacos
8.
Am J Physiol Cell Physiol ; 289(2): C341-51, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15814591

RESUMEN

The slc4 and slc26 gene families encode two distinct groups of gene products that transport HCO(3)(-) and other anions in mammalian cells. The SLC4 and SLC26 proteins are important contributors to transepithelial movement of fluids and electrolytes and to cellular pH and volume regulation. Herein we describe the cDNA cloning from the nematode Caenorhabditis elegans of four anion bicarbonate transporter (abts) homologs of slc4 cDNA and eight sulfate permease (sulp) homologs of slc26 cDNA. Analysis of transgenic nematode strains carrying promoter::GFP fusions suggests relatively restricted expression patterns for many of these genes. At least three genes are expressed primarily in the intestine, three are expressed primarily in the excretory cell, and one is expressed in both of these polarized cell types. One of the genes is also expressed exclusively in the myoepithelium-like cells of the pharynx. Many of the sulp gene products localize to the basolateral membrane rather than to the apical membrane. Several ABTS and SULP proteins exhibited anion transport function in Xenopus oocytes. The strongest Cl(-) transporter among these also mediated Cl(-)/HCO(3)(-) exchange. These findings encourage exploitation of the genetic strengths of the nematode model system in the study of the physiological roles of anion transport by the proteins of these two highly conserved gene families.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Transporte de Anión/metabolismo , Caenorhabditis elegans/metabolismo , Clonación Molecular , ADN Complementario , Expresión Génica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...