Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 12(9)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174619

RESUMEN

BACKGROUND: Myocardial fibrosis is a common postmortem finding among individuals with Sudden Cardiac Death (SCD). Numerous in vivo and in vitro studies have shown that increased galectin-3 (gal3) expression into the myocardium is associated with higher incidence of fibrosis. Although elevated gal3 expression is linked with myocardial fibrosis, its role in predicting the risk of SCD is unknown. METHODS: We reviewed the clinical datasets and post-mortem examination of 221 subjects who had died suddenly. We examined myocardial pathology including the extent of cardiac hypertrophy, fibrosis, and the degree of coronary atherosclerosis in these subjects. In a select group of SCD subjects, we studied myocardial gal3 and periostin expression using immunohistochemistry. To further examine if a higher level of circulating gal3 can be detected preceding sudden death, we measured serum gal3 in a porcine model of subtotal coronary artery ligation which shows an increased tendency to develop lethal cardiac arrhythmias, including ventricular tachycardia or fibrillation. RESULTS: Of the total 1314 human subjects screened, 12.7% had SCD. Comparison of age-matched SCD with non-SCD subjects showed that SCD groups had excessive myocardial fibrosis involving both the left ventricular free wall and interventricular septum. In pigs with subtotal coronary artery ligation and SCD, we detected significantly elevated circulating gal3 levels approximately 10 days preceding the SCD event. Immunohistochemistry showed increased myocardial gal3 and periostin expression in pigs that died suddenly, compared to the controls. CONCLUSION: Our study shows that increased gal3 is associated with a higher risk of myocardial fibrosis and the risk of SCD. This supports the importance of larger translational studies to target gal3 to prevent cardiac fibrosis and attenuate the risk of SCD.


Asunto(s)
Muerte Súbita Cardíaca , Galectina 3 , Humanos , Animales , Porcinos , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/prevención & control , Corazón , Miocardio/patología , Arritmias Cardíacas/complicaciones , Fibrosis
3.
Am J Hum Genet ; 101(2): 239-254, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777931

RESUMEN

The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/enzimología , Masculino , Mitocondrias/genética , Fosforilación Oxidativa , Proteómica , Empalme del ARN/genética , Análisis de Secuencia de ADN
4.
Hum Mutat ; 38(4): 373-377, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054444

RESUMEN

A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419* variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419* protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes-Brocks syndrome.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Ano Imperforado , Codón sin Sentido , Pérdida Auditiva Sensorineural , Proteínas Nucleares/genética , Pulgar/anomalías , Anomalías Múltiples/patología , Animales , Genes Dominantes , Células HEK293 , Heterocigoto , Humanos , Ratones Noqueados , Análisis de Secuencia de ADN/métodos , Síndrome , Anomalías Urogenitales , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...