Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(1): 86-95, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38127495

RESUMEN

It is well known that adenosine and its phosphate derivatives play a crucial role in biological phenomena such as apoptosis and cell signaling and act as the energy currency of the cell. Although their interactions with various proteins and enzymes have been described, the focus of this work is to demonstrate the effect of the phosphate group on the activity and stability of the native heme metalloprotein cytochrome c (Cyt c), which is important from both biological and industrial aspects. In situ and in silico characterizations are used to correlate the relationship between the binding affinity of adenosine and its phosphate groups with unfolding behavior, corresponding peroxidase activities, and stability factors. Interaction of adenosine (ADN), adenosine monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP) with Cyt c increases peroxidase-like activity by up to 1.8-6.5-fold compared to native Cyt c. This activity is significantly maintained even after multiple stress conditions such as oxidative stress and the presence of a chaotropic agent such as guanidine hydrochloride (GuHCl). With binding affinities on the order of ADN < AMP < ADP < ATP, adenosine derivatives were found to stabilize Cyt c by varying the secondary structural features of the protein. Thus, in addition to being a fundamental study, the current work also proposes a way of stabilizing protein systems to be used for real-time biocatalytic applications.


Asunto(s)
Adenosina , Citocromos c , Citocromos c/química , Fosfatos , Adenosina Trifosfato/metabolismo , Adenosina Monofosfato , Peroxidasas
2.
Anal Methods ; 15(26): 3259-3267, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37366572

RESUMEN

A Schiff base receptor with an active -NH group was designed and synthesized for the selective and sensitive colorimetric detection of inorganic fluoride (F-) ions in an aqueous medium. The sensitivity of the receptor for F- ions was enhanced by the influence of two electron-withdrawing -NO2 groups at ortho and para positions which result in a vivid color change. The receptor underwent a remarkable color change from light yellow to violet, enabling naked-eye detection of F- ions without the need for spectroscopic equipment. To ensure the structural integrity of the synthesized receptors, prominent spectroscopic techniques such as 1H NMR, FTIR, and GCMS analysis were used for characterization. With a limit of detection (LoD) of 0.0996 ppm, a 1 : 2 stoichiometric binding ratio was observed for receptor and F- ions. The binding mechanism confirmed the deprotonation of the -NH group followed by the formation of -HF2, resulting in an intramolecular charge transfer (ICT) transition, which correlates with UV-vis and 1H NMR titration results. In addition, the proposed binding mechanism of F- ion interaction with the receptor was theoretically validated using DFT and TDDFT calculations. Furthermore, as a real-life implementation of the receptor, quantification of the F- ions present in a commercially available mouthwash was demonstrated. To assess the sensitivity performance, a paper-based dip sensor and a solid substrate sensor by functionalizing the receptor on diatomaceous earth were demonstrated. Finally, sensors were built into smartphones that could recognize the red, green, and blue percentages (RGB%) where each parameter defines the intensity of the color, which could also be used as a supplement to the colorimetric investigations.

3.
Chem Commun (Camb) ; 59(39): 5894-5897, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097129

RESUMEN

Herein, we present a simple approach to fabricate protein nanoconstructs by complexing cytochrome C (Cyt C) with silk nanofibrils (SNF) and choline dihydrogen phosphate ionic liquid (IL). The peroxidase activity of the IL modified Cyt C nanoconstruct (Cyt C + SNF + IL) increased significantly (2.5 to 10-fold) over unmodified Cyt C and showed enhanced catalytic activity and stability under harsh conditions, proving its potential as a suitable protein packaging strategy.


Asunto(s)
Citocromos c , Líquidos Iónicos , Citocromos c/metabolismo
4.
Int J Biol Macromol ; 215: 184-191, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35716795

RESUMEN

Existence of numerous biomolecules results in biological fluids to be extremely crowded. Thus, Macromolecular crowding is an essential phenomenon to sustain active conformation of proteins in biological systems. Herein, double helical deoxyribonucleic acid (B-DNA) is presented for the first time as a biomacromolecular crowding system for sustainable packaging of cytochrome c (Cyt C). The peroxidase activity of Cyt C was investigated in the presence of various concentrations of B-DNA (from salmon milt). At an optimized concentration of 0.125 mg/mL B-DNA, an 11-fold higher catalytic activity was found than in native Cyt C with improved stability. Molecular docking and spectroscopic analyses revealed that electrostatic and H-bonding are the main interactions between DNA and Cyt C that affect the structural stability and activity of the protein. Moreover, the catalytic activity and stability of the protein were further investigated in the presence of severe process conditions by UV-visible, circular dichroism, and Fourier-transform infrared spectroscopies. Molecularly crowded Cyt C showed significantly higher activity and stability under severe environments such as high temperature (110 °C), oxidative stress, high pH (pH 10) and biological (trypsin) and chemical denaturants (urea) compared to bare Cyt C. The observed results support the suitability of DNA-based macromolecular crowding media as a viable and effective stabilizer of proteins against multiple stresses.


Asunto(s)
Citocromos c , ADN Forma B , Dicroismo Circular , Citocromos c/química , Sustancias Macromoleculares/química , Simulación del Acoplamiento Molecular
5.
Int J Biol Macromol ; 183: 1784-1793, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34051253

RESUMEN

Naturally occurring peroxidases are important for living organisms and have manifold utility in industries. However, lack of stability in harsh reaction conditions hinders wide applicability of such enzymes. Thus, suitable alternative is vital which can endure severe reaction conditions. As a substitute of natural peroxidase, herein, biopolymer-based polyelectrolyte complexes (PECs) coordinated with Fen+ is proposed as macromolecular peroxidase mimicking systems. Three PECs were engineered via complexation of protonated chitosan and alginate with Fe2+ (Fe2+-PEC), Fe3+ (Fe3+-PEC), and Fe3O4 (Fe3O4-PEC), respectively. Computational study showed the Fe3+-PEC was highly stable with abundant electrostatic and intramolecular hydrogen bonding interactions. The versatility of the Fe-PECs as artificial peroxidase biocatalysts was probed by two types of peroxidase assays - ABTS oxidation in buffer systems (pH 4.0 and 7.0) and pyrogallol oxidation in organic solvents (acetonitrile, ethyl acetate and toluene). Overall, Fe3+-PEC showed remarkably high peroxidase activity both in aqueous buffers and in organic solvents, whereas, Fe3O4-PEC showed least catalytic activity. Finally, as a proof of concept, the ability of the biocatalyst to carry out deep oxidative desulphurization was demonstrated envisaging removal of dibenzothiophene from model fossil fuel in a sustainable way.


Asunto(s)
Biopolímeros/química , Compuestos Férricos/síntesis química , Peroxidasa/síntesis química , Tiofenos/análisis , Alginatos/química , Biocatálisis , Catálisis , Quitosano/química , Compuestos Férricos/química , Gasolina , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Peroxidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...