Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Clin Pediatr Dent ; 16(Suppl 3): 240-246, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38268633

RESUMEN

Stem cells from human exfoliated deciduous teeth (SHED) provide an important autologous source for stem cell-based regenerative therapies with their easy acquisition and multipotency. However, the understanding of their antibacterial and immunomodulatory properties is limited. This in vitro research aims to determine whether SHED inhibits the growth of Streptococcus mutans (S. mutans) and Enterococcus faecalis (E. faecalis), as well as whether or not it has immunomodulatory effects by measuring interleukins (ILs)-2 and -6 levels. SHEDs were derived from the pulp of deciduous teeth that had undergone up to two-thirds of their roots' resorption. Isolated SHEDs were characterized on their morphological features, viability, assessment of surface markers, and in vitro induction into osteocytes and adipocytes. SHED was tested for its antibacterial efficacy against S. mutans and E. faecalis using a colony-forming units (CFU) assay. Lastly, we checked the cytokine levels by enzyme-linked immune sorbent assay (ELISA) for assessing the immunomodulatory properties of SHED. The results showed that the established SHED had fibroblastic morphology with higher viability. The ability to differentiate into osteocytes and adipocytes, as well as the expression of stem cell-specific markers, demonstrated their potential and flexibility under in vitro settings. SHED demonstrated antibacterial characteristics by significantly (p < 0.05) lowering S. mutans CFU, whereas E. faecalis CFU was either unaffected by or just slightly affected by the cells. SHED also helped keep inflammatory indicators, including IL-2 and IL-6, at stable levels when compared to the control. The results indicate that SHED may aid in preventing or reducing an infection due to its antibacterial activity and may provide immunomodulatory activities by controlling the production of cytokines. How to cite this article: Tyagi A, Shetty J, Shetty S, et al. Antibacterial and Immunomodulatory Properties of Stem Cells from Human Exfoliated Deciduous Teeth: An In Vitro Study. Int J Clin Pediatr Dent 2023;16(S-3):S240-S246.

2.
Stem Cell Investig ; 8: 15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527730

RESUMEN

BACKGROUND: Stem cells from human exfoliated deciduous teeth (SHED) are regarded as an attractive cell source for tissue regeneration. However, the effect of different levels of root resorption on the characteristics of SHED remains less understood. Thus, the tooth source that is most suitable for the isolation of SHEDs needs to be determined. To compare cellular and biological characteristics of stem cells from human exfoliated deciduous posterior teeth with varying levels of root resorption. METHODS: The pulp was obtained from the deciduous posterior teeth depending on the level of root resorption, and isolated SHEDs were grouped as follows: Teeth with 0 to 1/3rd root resorption as SHEDs (G1) and 1/3rd to 2/3rd root resorption as SHEDs (G2). Teeth were also collected from >2/3rd root resorption status, but failed to establish primary culture of SHED as the availability of pulp tissue was too less. Later, isolated SHEDs were compared on their morphology, viability, growth kinetics, colony-forming ability, expression of cell surface markers and in vitro differentiation into osteocytes and adipocytes. RESULTS: No major differences were observed in terms of cellular morphology, viability, proliferation rate, colony-forming ability, cell surface markers expression, and mesenchymal lineage differentiation of SHEDs isolated from posterior teeth with 0 to 1/3rd and 1/3rd to 2/3rd root resorption. However, SHED from teeth with 0 to 1/3rd root resorption (G1) displayed relatively higher proliferation capacity and expression of selected markers. CONCLUSIONS: Collectively, SHEDs (G1) and SHEDs (G2) showed comparable cellular and biological characteristics that enable their possible applications in regenerative therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...